DUAL OPERATOR ALGEBRAS AND HEREDITARY PROPERTIES OF ISOMETRIC DILATIONS AND COISOMETRIC EXTENSIONS

MI KYUNG JANG AND YOUNG SOO JO

ABSTRACT. We discuss contraction operators T in the class \mathbb{A} , where \mathbb{A} is the class of absolutely continuus contractions for which the Sz.-Nagy-Foias funtional calculus is isometry. We obtain relationship between the class \mathbb{A}_{n,\aleph_0} and the hereditary propety $(\tilde{\mathbf{P}}_n)$.

1. Introduction

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $I_{\mathcal{H}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$. This notion of dual algebras was introduced by S. Brown in [5], where he proved that every subnormal operator has a nontrivial invariant subspace. The theory of dual algebras is deeply related to the study of the problem of solving systems of simultaneous equations in the predual of a singly generated dual algebra (see [1], [3] and [4]). This theory is applied to the study of invariant subspaces and compression theory. In particular, in [6] Chevreau-Exner-Pearcy obtained some characterizations of the class A_{1,\aleph_0} . In addition, Exner-Jung [11] defined certain hereditary properties concerning a minimal isometric dilation of T in A and obtained some characterizations for membership in the the class A_{1,\aleph_0} .

Received March 16, 1996. Revised July 20, 1996.

¹⁹⁹¹ AMS Subject Classification: 47D20.

Key words and phrases: Dual algebras, Hereditary property, Minimal isometric dilation.

This work was partially supported by University affiliated research Institute, Korea Research Foundation, 1993.

In section 2 we recall some notation and terminology concerning dual algebras. In section 3 we define certain hereditary properties concerning minimal isometric dilations or minimal coisometric extensions of a contraction operator $T \in \mathcal{L}(\mathcal{H})$ and apply those notion to the class \mathbb{A}_{1,\aleph_0} . In section we apply the hereditary property to the classes $\mathbb{A}_{m,n}$.

2. Notation and preliminaries

The notation and terminology employed here agree with those in [2], [4] and [19]. We recall nonetheless them for the convenience of the reader.

Suppose that \mathcal{A} is a dual algebra in $\mathcal{L}(\mathcal{H})$. Let $\mathcal{C}_1 = \mathcal{C}_1(\mathcal{H})$ be the von Neumann-Schatten ideal of trace class operators in $\mathcal{L}(\mathcal{H})$ under the trace norm and let $^{\perp}\mathcal{A}$ denote the preannihilator of \mathcal{A} in \mathcal{C}_1 . Let $\mathcal{Q}_{\mathcal{A}}$ denote the quotient space $\mathcal{C}_1/^{\perp}\mathcal{A}$. One knows that \mathcal{A} is the dual space of $\mathcal{Q}_{\mathcal{A}}$ and that the duality is given by

$$(2.1) \langle T, [L] \rangle = trace(TL), T \in \mathcal{A}, [L] \in \mathcal{Q}_{\mathcal{A}}.$$

Furthermore, the weak* topology that accrues to \mathcal{A} by virtue of this duality coincides with the ultraweak operator topology on \mathcal{A} (cf. [9]). For $T \in \mathcal{L}(\mathcal{H})$, let \mathcal{A}_T denote the dual algebra generated by T. For vectors x and y in \mathcal{H} , we write, as usual, $x \otimes y$ for the rank one operator in \mathcal{C}_1 defined by $(x \otimes y)(u) = (u, y)x$, $u \in \mathcal{H}$.

We shall denote by $\mathbb D$ the open unit disc in the complex plane $\mathbb C$ and we write $\mathbb T$ for the boundary of $\mathbb D$. For $1 \leq p \leq \infty$ we denote the usual Lebesgue function space by $L^p = L^p(\mathbb T)$. For $1 \leq p \leq \infty$ we denote by $H^p = H^p(\mathbb T)$ the subspace of L^p consisting of those functions whose negative Fourier coefficients vanish. One knows that the preannihilator $L^1(H^\infty)$ of L^1 is the subspace $L^1(H^\infty)$ consisting of those functions $L^1(H^\infty)$ in $L^1(H^\infty)$ is the subspace $L^1(H^\infty)$ satisfies $L^1(H^\infty)$. It is well known that $L^1(H^\infty)$ is the dual space of $L^1(H^1)$.

Let us recall that any contraction T can be written as a direct sum $T = T_1 \oplus T_2$, where T_1 is a completely nonunitary contraction and T_2 is a unitary operator (cf. [19]). If T_2 is absolutely continuous or acts on the space (0), T will be called an absolutely continuous contraction.

The following provides a good relationship between the function space H^{∞} and a singly generated dual algebra \mathcal{A}_T .

FOIAŞ-NAGY FUNCTIONAL CALCULUS [5, Theorem 4.1]. Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Then there is an algebra homomorphism $\Phi_T: H^\infty \longrightarrow \mathcal{A}_T$ defined by $\Phi_T(f) = f(T)$ such that

- (a) $\Phi_T(1) = 1_{\mathcal{H}}, \quad \Phi_T(\xi) = T,$
- (b) $\|\Phi_T(f)\| \le \|f\|_{\infty}, f \in H^{\infty},$
- (c) Φ_T is continuous if both H^{∞} and \mathcal{A}_T are given their weak* topologies,
- (d) the range of Φ_T is weak* dense in \mathcal{A}_T ,
- (e) there exists a bounded, linear, one-to-one map $\phi_T: \mathcal{Q}_T \longrightarrow L^1/H_0^1$ such that $\phi_T^* = \Phi_T$, and
- (f) if Φ_T is an isometry, then Φ_T is a weak* homeomorphism of H^{∞} onto \mathcal{A}_T and ϕ_T is an isometry of \mathcal{Q}_T onto L^1/H_0^1 .

Suppose that m and n are any cardinal numbers such that $1 \le m, n \le \aleph_0$. A dual algebra \mathcal{A} will be said to have property $(\mathbb{A}_{m,n})$ if every $m \times n$ system of simultaneous equations of the form $[x_i \otimes y_j] = [L_{ij}], \ 0 \le i < m, \ 0 \le j < n$, where $\{[L_{ij}]\}_{\substack{0 \le i < m \\ 0 \le j < n}}$ is an arbitrary $m \times n$ array from \mathcal{Q}_A , has a solution $\{x_i\}_{0 \le i < m}, \ \{y_j\}_{0 \le j < n}$ consisting of a pair of sequences of vectors from \mathcal{H} . For brevity, we shall denote $(\mathbb{A}_{n,n})$ by (\mathbb{A}_n) . The class $\mathbb{A}(\mathcal{H})$ consists of all those absolutely continuous contractions T in $\mathcal{L}(\mathcal{H})$ for which the functional calculus $\Phi_T : \mathcal{H}^\infty \longrightarrow \mathcal{A}_T$ is an isometry. Furthermore, we denote by $\mathbb{A}_{m,n}(\mathcal{H})$ the set of all T in $\mathbb{A}(\mathcal{H})$ such that the algebra \mathcal{A}_T has property $(\mathbb{A}_{m,n})$. We write simply $\mathbb{A}_{m,n}$ for $\mathbb{A}_{m,n}(\mathcal{H})$ unless we mention otherwise.

If \mathcal{M} is a semi-invariant subspace for $T \in \mathcal{L}(\mathcal{H})$ (i.e., there exist invariant subspaces \mathcal{N}_1 and \mathcal{N}_2 for T with $\mathcal{N}_1 \supset \mathcal{N}_2$ such that $\mathcal{M} = \mathcal{N}_1 \oplus \mathcal{N}_2$, $T_{\mathcal{M}}$ denotes the *compression* of T to \mathcal{M} . In other words, $T_{\mathcal{M}} = P_{\mathcal{M}}T|\mathcal{M}$, where $P_{\mathcal{M}}$ is the orthogonal projection whose range is \mathcal{M} .

Throughout this paper, we write \mathbb{N} for the set of natural numbers. For a Hilbert space \mathcal{K} and any operators $T_i \in \mathcal{L}(\mathcal{K}), i = 1, 2$, we write $T_1 \cong T_2$ if T_1 is unitarily equivalent to T_2 .

Recall that $T \in C_{\cdot 0}$ if $||T^{*n}x|| \longrightarrow 0$ for any $x \in \mathcal{H}$. We say $T \in C_0$. if $T^* \in C_{\cdot 0}$. And we denote that $C_{00} = C_0 \cap C_{\cdot 0}$.

3. Some hereditary properties

Let T be a contraction operator in $\mathcal{L}(\mathcal{H})$ and let $B_T \in \mathcal{L}(\mathcal{K}'_+)$ be a minimal isometric dilation of T with the Wold decomposition

$$(3.1) B_T = S^{(n)} \oplus R_T,$$

where

(2)
$$\mathcal{K}_{+} = \bigvee_{n=0}^{\infty} B_{T}^{n} \mathcal{H}.$$

It follows from Wold decomposition theorem that

$$(3) B_T = S_T \oplus R_T,$$

where $S_T \in \mathcal{L}(\mathcal{U}_T)$ is the unilateral shift part and $R_T \in \mathcal{L}(\mathcal{R}_T)$ is the residual part. Now suppose that $T \in \mathcal{L}(\mathcal{H})$ has a non-zero semi-invariant subspace \mathcal{M} (i.e, $\mathcal{M} \neq (0)$). For $\widetilde{T} = T_{\mathcal{M}}$, we write a minimal isometric dilation of \widetilde{T} by

$$(3.2) B_{\widetilde{T}} = S^{(m)} \oplus R_{\widetilde{T}}.$$

Let us denote

$$(3.3) B_T' = S^{*(n')} \oplus R_T'$$

a minimal coisometric extension of T and denote

$$\mathcal{B}_{\widetilde{T}}' = S^{\star (m')} \oplus R_{\widetilde{T}}'$$

a minimal coisometric extension of \widetilde{T} . With the notation of (4.1)-(4.4), we construct the following definition and discuss this section.

DEFINITION 3.1. Suppose that T is a contraction operator on \mathcal{H} .

- (a) T has property (**P**) if $n \ge m$ for any nonzero semi-invariant subspace \mathcal{M} for T.
- (b) T has property (\mathbf{P}^*) if $n' \ge m'$ for any nonzero semi-invariant subspace \mathcal{M} for T.

The following examples are slight modifications of those in [9].

EXAMPLE 3.2. If $T \in C_{.0}$, then T has property (**P**).

EXAMPLE 3.3. If $S \in \mathcal{L}(\mathcal{H})$ is a unilateral shift operator of multiplicity one, then S^* can not have property (\mathbf{P}) .

REMARK 3.4. We can exchange the notions made by semi-invariant subspace with those of invariant subspaces in Definition 3.1. For example, T has property (\mathbf{P}) if and only if $n \geq m$ for for any nonzero invariant subspace \mathcal{M} for T, which is said to be property (\mathbf{P}') for being time. To establish the validity, we assume that T has property (\mathbf{P}') and suppose that $B_T = S^{(n)} \oplus R_T$ is the minimal isometric dilation of T. Let \mathcal{M} be a non-zero semi-invariant subspace for T. Then there exist $\mathcal{N}_1, \mathcal{N}_2 \in \mathrm{Lat}(T)$ with $\mathcal{N}_1 \supset \mathcal{N}_2$ such that $\mathcal{M} = \mathcal{N}_1 \oplus \mathcal{N}_2$. Let

$$\mathcal{K}_1 = \bigvee_{n>0} B_T^n \mathcal{N}_1$$

and

$$\mathcal{L} = \bigvee_{n>0} B_T^n \mathcal{M}.$$

Then the restrictions $C = B_T | \mathcal{K}_1 = S^{(m)} \oplus R_{T|\mathcal{N}_1}$ and $D = B_T | \mathcal{L} = S^{(l)} \oplus R_{T_{\mathcal{M}}}$ are the minimal isometric dilations of $T | \mathcal{N}_1$ and $T_{\mathcal{M}}$, respectively. Let $x \in \mathcal{K}_1 \oplus \mathcal{L}$ and let $a \in \mathcal{M}$. Note that

(3.7)
$$(Cx, B_T^n a) = \begin{cases} (B_T x, a) & \text{if } n = 0 \\ (x, B_T^{n-1} a) & \text{if } n > 1. \end{cases}$$

By the structure of B_T it is easy to show that $B_T x \in \mathcal{M}^{\perp}$. Hence it follows by (3.7) $(Cx, B_T^n a) = 0$ for any $n \geq 0$. Hence \mathcal{L} is reducing for C, which implies that $m \geq l$. Moreover, by the assumption, it is obvious that $m \leq n$. Hence $l \leq n$ and T has property (\mathbf{P}). Since the converse implication is obvious, property (\mathbf{P}) is equivalent to property (\mathbf{P}'). The imitative cases of (b), (c) and (d) can be proved by the similar method. Hence two notions are equivalent. \square

We use any one of two notations in the above remark without confusion.

PROPOSITION 3.5. Every contraction operator T on \mathcal{H} has property (\mathbf{P}^*) .

PROOF. With the notation (3.1)-(3.4), we prove this theorem. Let \mathcal{M} be a non-zero invariant subspace for T and let $B'_{\widetilde{T}} = S^{*(n')} \oplus R'_{\widetilde{T}}$ be a minimal coisometric extension of \widetilde{T} on $\mathcal{S}'_{\widetilde{T}} \oplus \mathcal{R}'_{\widetilde{T}} = \mathcal{K}''_{+}$. Then B'_{T} is a coisometric extension of \widetilde{T} on \mathcal{K}'_{+} . Hence there exists $\widetilde{\mathcal{K}}'' \in \operatorname{Lat}(B'_{T})$ such that $B'_{T}|\widetilde{\mathcal{K}}'' \cong B'_{\widetilde{T}}$. Note that $B'_{T}|\widetilde{\mathcal{K}}'' \cong S' \oplus R' \in \mathcal{L}(\mathcal{S}' \oplus \mathcal{R}')$, where S'' is the shift part and R'' is the unitary part, and that

$$B_T'|\widetilde{\mathcal{K}}''\cong B_{\widetilde{T}}'=S_{\widetilde{T}}^{(m')}\oplus R_{\widetilde{T}}'\in\mathcal{L}(\mathcal{S}_{\widetilde{T}}'\oplus\mathcal{R}_{\widetilde{T}}')$$

and $S''\cong S_{\widetilde{T}}^{(m')}$. To show that $S''\subset S_T'$, let $x\in S'\subset \widetilde{\mathcal{K}}''\subset \mathcal{K}'_+$ and let $x=s\oplus r\in \mathcal{S}_T'\oplus \mathcal{R}_T'$. Then

(3.8)
$$||S''^{*n}x||^2 = ||B'^n_Tx||^2 = ||S'^{*n}_Ts||^2 + ||R'^n_Tr||^2$$

$$= ||S'^{*n}_Ts||^2 + ||r||^2.$$

Letting $n \to \infty$, we have that r = 0 and $x \in \mathcal{S}'_T$. Hence the multiplicity of $S'_T \ge m'$ which implies that T has property (\mathbf{P}^*) . Therefore the proof is complete. \square

REMARK 3.6. We apply the rule of properties (**P**) and (**P***) to the unitary part of B_T and B_T' , respectively. For example, if we define as follows:

- (a) T has property (\mathbf{Q}) if there exists $\mathcal{U} \in \operatorname{Lat}(R_T)$ such that $R_T | \mathcal{U} \cong R_{\widetilde{T}}$ for any nonzero semi-invariant subspace \mathcal{M} for T;
- (b) T has property (\mathbf{Q}^*) if there exists $\mathcal{U}' \in \operatorname{Lat}(R_T')$ such that $R_T' | \mathcal{U}' \cong R_{\widetilde{T}}'$ for any nonzero semi-invariant subspace \mathcal{M} for T, according to the method of the proof of Proposition 3.1 and Proposition 4.5 we have that every contraction operator T has both property (\mathbf{Q}^*) and property (\mathbf{Q}) .

4. Application to the classes $\mathbb{A}_{m,n}$

Let T be a contraction on \mathcal{H} . Recall that if $d_T < \infty$ and $d_{T^*} < \infty$, then T is a Fredholm operator and the Fredholm index $\operatorname{ind}(T)$ is equal to $d_T - d_{T^*}$ (cf. [12]).

DEFINITION 4.1. A contraction operator $T \in \mathbb{A}$ has property $(\widetilde{\mathbf{P}})$ if there exists $\mathcal{M} \in \mathrm{Lat}(T)$ such that

- (a) $T|\mathcal{M} \in \mathbb{A}(\mathcal{M})$ and
- (b) $T|\mathcal{M}$ has property (**P**).

The contraction operator $T \in \mathbb{A}(\mathcal{H}) \setminus \mathbb{A}_{\aleph_0}$ has property $(\widetilde{\mathbf{P}}_n)$ if it satisfies additionary condition:

(c) $\operatorname{ind}(T|\mathcal{M}) \leq -n$.

THEOREM 4.2. Suppose $T \in \mathbb{A}(\mathcal{H})$. Then $T \in \mathbb{A}_{1,\aleph_0}$ if and only if T has property $(\widetilde{\mathbf{P}})$.

PROOF. According to [9, Theorem 3.4], it is easy to show that property $(\widetilde{\mathbf{H}})$ is equivalent to $(\widetilde{\mathbf{P}})$, where property $(\widetilde{\mathbf{H}})$ appeared in [9]. \square

THEOREM 4.3. Suppose $T \in \mathbb{A} \cap C_{\cdot 0}$ with $d_T < \infty$. Then $T \in \mathbb{A}_{n,\aleph_0}$ if and only if T has property $(\widetilde{\mathbf{P}}_n)$

PROOF. (\Longrightarrow) : obvious.

(\Leftarrow): Let us denote $\widetilde{T} = T | \mathcal{M}$ for a proper invariant subspace \mathcal{M} . Then $d_{\widetilde{T}} < \infty$ and $\operatorname{ind}(\widetilde{T}) \leq -n$. Since $\widetilde{T} \in C_{\cdot 0}$ by [8], $\widetilde{T} \in \mathbb{A}_{n,\aleph_0}$ and $T \in \mathbb{A}_{n,\aleph_0}$. \square

COROLLARY 4.4. Suppose $T \in \mathbb{A}$ with $d_T < \infty$. Then T has property $(\widetilde{\mathbf{P}})$ if and only if T has property $(\widetilde{\mathbf{P}}_1)$.

REMARK 4.5. If $T \in \mathbb{A}$ and $\mathcal{R}_T = (0)$, T has property $(\widetilde{\mathbf{P}})$ and $T \in \mathbb{A}_{1,\aleph_0}$. But if $\mathcal{S}_T = (0)$, in general $T \in \mathbb{A}$ can not belongs to the \mathbb{A}_{1,\aleph_0} (for a counterexample, consider the backward unilateral shift operator of multiplicity one). Moreover, assume that $\mathcal{R}_T \neq (0)$. Then according to [6, Theorem 2.5], we that $R_T \in \mathbb{A}$ implies $T \in \mathbb{A}_{1,\aleph_0}$. And if $\mathcal{S}_T \neq (0)$, T can not belong to the \mathbb{A}_{1,\aleph_0} (for a counterexample, consider $T = S^* \oplus S(\theta)$, where $S(\theta)$ is a Jordan block. Then it follows from [11, Corollary 5.4] that $T \notin \mathbb{A}_{1,\aleph_0}$).

References

- 1. C. Apostol, H. Bercovici, C. Foiaş and C. Pearcy, Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I, J. Funct Anal. 63 (1985), 369-404.
- 2. H. Bercovici, Operator theory and arithemetic in H^{∞} , Math. Surveys and Monographs, No. 26, A.M.S. Providence, R.I., 1988.
- 3. H. Bercovici, C. Foiaş and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I, Michigan Math. J. 30 (1983), 335-354.
- 4. _____, Dual algebra with applications to invariant subspaces and dilation theory, CBMS Conf. Ser. in Math. No. 56, Amer. Math. Soc. Providence, R.I., 1985.
- 5. S. Brown, Some invariant subspaces for subnormal operators, Integral Equations Operator Theory 1 (1978), 310-333.
- 6. B. Chevreau, G. Exner and C. Pearcy, On the structure of contraction operators, III, Michigan Math. J. 36 (1989), 29-62.
- 7. J. Dixmier, Von Neumann algebras, North-Holland Publishing Company, Amst. New York, Oxford, 1969.
- 8. G. Exner, Y. Jo and I. Jung, C.o-contractions: dual operator algebras, Jordan models, and multiplicity, submitted.
- 9. G. Exner and I. Jung, Dual operator algebras and a hereditary property of minimal isometric dilations, Michigan Math. J. 39 (1992), 263-270.
- 10. K. Hoffman, Banach spaces of analytic functions, Prentic-Hall, Englewood Cliffs, NJ, 1965.
- 11. I. Jung, Dual Operator Algebras and the Classes $\mathbb{A}_{m,n}$. I, J. Operator Theory 27 (1992).
- 12. G. Popescu, On quasi-similarity of contractions with finite defect indices, Integral Equations and Operator Theory 11 (1988), 883-892.
- 13. Sz.-Nagy and C. Foias, Harmonic analysis of operators on the Hilbert space, North Holland Akademiai Kiado, Amsterdam/Budapest, 1970.

Mi Kyung Jang Department of Mathematics Kyungpook National University Taegu 702-701, Korea

Young Soo Jo Department of Mathematics Keimyung University Taegu 704-701, Korea