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DUAL OPERATOR ALGEBRAS AND
HEREDITARY PROPERTIES OF ISOMETRIC
DILATIONS AND COISOMETRIC EXTENSIONS

M1 KyunNG JANG AND YOUNG So0 Jo

ABSTRACT. We discuss contraction operators 7' i1: the class A, where A
1s the class of absolutely continuus contractions for which the Sz.-Nagy-
Foias funtional calculus i1s isometry. We obtain relationship between the

class A, x, and the hereditary propety (Px).

1. Introduction

Let 'H be a separable, infinite dimensional, comnplex Hilbert space and
let £L(H) denote the algebra of all bounded linear operators on H. A dual
algebra is a subalgebra of £(H) that contains the identity operator Iy
and is closed in the ultraweak operator topology on £(H). This notion
of dual algebras was introduced by S. Brown in [5], where he proved
that every subnormal operator has a nontrivial invariant subspace. The
theory of dual algebras is deeply related to the study of the problem
of solving systems of simultaneous equations in the predual of a singly
generated dual algebra (see [1], {3] and [4]). This theory is applied to the
study of invariant subspaces and compression theory. In particular, in
[6] Chevreau-Exner-Pearcy obtained some characterizations of the class
A .. In addition, Exner-Jung [11] defined certain hereditary properties
concerning a minimal isometric dilation of 7' in A and obtained some
characterizations for membership in the the class A x,.
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In section 2 we recall some notation and terminology concerning dual
algebras. In section 3 we define certain hereditary properties concerning
minimal isometric dilations or minimal coisometric extensions of a con-
traction operator T' € £(H) and apply those notion to the class Ay,
In section we apply the hereditary property to the classes A

2. Notation and preliminaries

The notation and terminology employed here agree with those in (2],
[4] and [19]. We recall nonetheless them for the convenience of the reader.

Suppose that A is a dual algebra in £L(H). Let C; = C1(H) be the
von Neumann-Schatten ideal of trace class operators in £(H) under the
trace norm and let -4 denote the preannihilator of A in C;. Let Q4
denote the quotient space C;/+.4. One knows that A is the dual space
of Q4 and that the duality is given by

(2.1) <T,[L] > = trace(TL), T€ A, [L] ¢ Qua.

Furthermore, the weak* topology that accrues to .4 by virtue of this
duality coincides with the ultraweak operator topology on A (cf. [9]).
For T € L(H), let Ap denote the dual algebra generated by T. For
vectors ¢ and y in H, we write, as usual, r ® y for the rank one operator
in C; defined by (z @ y)(u) = (u,y)r, u€ H.

We shall denote by D the open unit disc in the complex plane C and
we write T for the boundary of D. For 1 < p < oo we denote the usual
Lebesgue function space by L? = LP(T). For 1 < p < oo we denote
by H? = HP(T) the subspace of L? consisting of those functions whose
negative Fourier coefficients vanish. One knows that the preannihilator
L(H>®) of H* in L' is the subspace H| consisting of those functions g
in H' for which analytic extension § to D satisfies g(0) =0 (cf. [14]). Tt
1s well known that H> is the dual space of L!/H].

Let us recall that any contraction T can be written as a direct sum
T=T&T,, where T} is a completely nonunitary contraction and T is
a unitary operator (cf. [19]). If T, is absolutely continuous or acts on
the space (0), T will be called an absolutely continuous contraction.

The following provides a good relationship between the function space
H® and a singly generated dual algebra Ar.
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FOI1A3-NAGY FUNCTIONAL CALCULUS [5, Theorem 4.1|. Let T be an
absolutely continuous contraction in L(H). Then there is an algebra
homomorphism ®¢: H*® — Ag defined by ®(f) = f(T) such that
(a) @p(1) =1y, @7(§) =T,

B 127D < 1 fllocs £ € H.

(¢) @7 1s continuous if both H> and Ay are given their weak™* topologies,
(d) the range of ®1 is weak™ dense in Ar,

(e) there exists a bounded, linear, one-to-one map ¢ : Qr — LI/H(}
such that ¢% = ®7, and

(f) if &7 is an isometry, then ®7 is a weak* homeomorphism of H >
onto Ar and ¢ is an isometry of Q@1 onto L'/H}.

Suppose that m and n are any cardinal numbers such that 1<m.n
<Ny. A dual algebra 4 will be said to have property (A, ) if every mxn
system of simultaneous equations of the form [1,Qy;] = [Li;], 0<i <
m, 0<j < n, where {[L,]]}%E;?: is an arbitrary m x n array from Q 4,

has a solution {z;}o<i<m, {E/J’}OSKH cousisting of a pair of sequences
of vectors from H. For brevity, we shall denote (A, ,) by (A,). The
class A('H) consists of all those absolutely continiious contractions T in
L(H) for which the functional calculus @1 : H>* — A7t is an isometry.
Furthermore. we denote by A,, ,(H) the set of all T in A(’H) such that
the algebra A has property (A,, ). We write simply A, ,, for A, (H)
unless we mention otherwise.

If M is a semi-invariant subspace for T € L(H) (i.e., there exist
invariant subspaces A} and ANy for T with A7 > A% such that M =
N1 & N3, Taq denotes the compression of T to M. In other words,
Tag = PT| M, where Py, is the orthogonal projection whose range is
M.

Throughout this paper, we write N for the sct of natural numbers.
For a Hilbert space K and any operators T; € L(K), ¢ = 1,2, we write
Ty = T, if T} is unitarily equivalent to T5.

Recall that T € C.o if ||T*"z|| — 0 for any z € H. We say T € C,.
if T* € C.y. And we denote that Cyg = Cy. N C.y.

3. Some hereditary properties
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Let T be a contraction operator in £(H) and let By € L(K', ) be a
minimal isometric dilation of T with the Wold decomposition

(3.1) Br = S(n) & Ry,

where

(2) Ki=\/ Bin.
n=0

It follows from Wold decomposition theorem that
(3) Br = Sr@Rr,

where S7 € L(Ur) is the unilateral shift part and Ry € £L(R7) is the
residual part. Now suppose that T € £(H) has a non-zero semi-invariant
subspace M (i.e, M # (0)). For T = Trq, we write a minimal isometric
dilation of T by

(3.2) B7=S" & Rz.

Let us denote

(3.3) By = 5*") g Rl

a minimal coisometric extension of T and denote

t _ ex(m') ]
(3.4) Bl = 5" g R

a minimal coisometric extension of T. With the notation of (4.1)-(4.4),
we construct the following definition and discuss this section.

DEFINITION 3.1. Suppose that T is a contraction operator on H.
(a) T has property (P) if n > m for any nonzero semi-invariant subspace
Mfor T.

(b) T has property (P*) if n’>m/’ for any nonzero senii-invariant subspace

M for T.

The following examples are slight modifications of those in [9].
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EXAMPLE 3.2. If T € C, then T has property (P).

ExAMPLE 3.3. If S € L('H) is a unilateral shift operator of multiplic-
ity one, then §* can not have property (P).

REMARK 3.4. We can exchange the notions made by semi-invariant
subspace with those of invariant subspaces in Definition 3.1. For ex-
ample, T has property (P) if and only if n > m for for any nonzero
invariant subspace M for T, which is said to be property (P’) for being
time. To establish the validity, we assume that 7" has property (P') and
suppose that By = S(™ @ Ry is the minimal isometric dilation of T.
Let M be a non-zero semi-invariant subspace for T. Then there exist

N1, Ny € Lat(T) with A7 D N, such that M = N1 © N, Let

(3.5) Ky =\/ BiM
n>0

and

(3.6) L=\ BiM.
n>0

Then the restrictions C = Br|K; = S'™ & Ry, and D = Br|L =
S @ Ry,, are the minimal isometric dilations of T|V; and Ty, respec-
tively. Let z € K1 & £ and let a € M. Note that

(Brz,a) if n=0
(3.7) (Cz,Bpa) = { aei .

(z,By a) if n2>1
By the structure of Br it is easy to show that Brz € ML, Hence it
follows by (3.7) (Cz,B}a) = 0 for any n > 0. Hence £ is reducing for
C, which implies that m > I. Moreover, by the assumption, it is obvious
that m < n. Hence ! < n and T has property (P). Since the converse
implication is obvious, property (P) is equivalent to property (P’). The
imitative cases of (b), (¢) and (d) can be proved by the similar method.
Hence two notions are equivalent. [l

We use any one of two notations in the above remark without confu-
sion.
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PROPOSITION 3.5. Every contraction operator T on ‘H has property
(P*).

PROOF. With the notation (3.1)-(3.4), we prove this theorem. Let
M be a non-zero invariant subspace for T and let B = CRRET RL be
a minimal coisometric extension of T on S’/T‘ D R'f = K. Then B} is
a coisometric extension of T on K’,. Hence there exists K" & Lat(B’.)
such that BL|K" = B’ Note that BY|K" = S'&R' € £(S'&R'), where
S'" is the shift part and R" is the unitary part, and that

!~ _ oflm ! ;o
K :B’T_ST uR GE(S' R)

and S”gsgf" ). To show that S'cShlet 2z € 8 ¢ K" ¢ K’ and let
T =sDHr e Sr@R,Y. Then

IS 2|l® = 1Bz ||* = |S'7"s]|* + | R r)*

(3.8)
= |S"7 sII” + |Ir )%

Letting n — oo, we have that r =0 and r € S’ Hence the multiplicity
of ST >m ' which implies that T has property (P*). Therefore the proof
1s complete. [J

REMARK 3.6. We apply the rule of properties (P) and (P*) to the
unitary part of By and B/, respectively. For example, if we define as
follows:

(a) T has property (Q) if there exists i € Lat(Ry) such that Rp|if = R
for any nonzero semi-invariant subspace M for T

(b) T has property (Q*) if there exists U’ € Lat(R‘.) such that R}, lL{"”R',
for any nonzero semi-invariant subspace M for T. accordmg to the
method of the proof of Proposition 3.1 and Proposition 4.5 we have
that every contraction operator T has both property (Q*) and property

(Q).
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4. Application to the classes A,, ,

Let T be a contraction on H. Recall that if dr < oo and dp» < oo,
then T' is a Fredholm operator and the Fredholm index ind(T) is equal
to dp — dp« (cf. [12]).

DEFINITION 4.1. A contraction operator T = A has property (f’) if
there exists M € Lat(T) such that
(a) TIM € A(M) and
(b) T|M has property (P).
The contraction operator T € A(H)\ Ay, has property (I~)n) if it satisfies
additionary condition:

(¢) ind(T|M) < —n.

THEOREM 4.2. Suppose T' € A(H). Then T € A, x, if and only if T
has property (P).

PROOF. According to [9 Theorem 3.4], it is 2asy to show that prop-
erty (H) is equivalent to (P), where property (H) appeared in [9]. [J

THEOREM 4.3. Suppose T € ANC.y withdy < co. Then T € A, x,
if and only if T has property (P,,)

PROOF. (==): obvious.
(<=): Let us denote T = T|M for a proper invariant subspace M.
Then d5 < oo and ind(f) < —n. Since T € C., by [8], T ¢ A, x, and
TeA,x, O

COROLLARY 4.4. SupposeT € A withdr < 05. ThenT has property
(P) if and only if T has property (P, ).

REMARK 4.5. If T € A and Ry = (0), T has property (f’) and
T € Ay, But if S¢ = (0), in general T € A can not belongs to
the Ay, (for a counterexample, consider the backward unilateral shift
operator of multiplicity one). Moreover, assume that Ry # (0). Then
according to [6, Theorem 2.5], we that Ry € A implies T € A ,. And if
St # (0), T can not belong to the A y, (for a ccunterexample, consider
T = 5@ S5(8), where 5(8) is a Jordan block. Then it follows from [11,
Corollary 5.4] that T ¢ A », ).
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