ON THE JOHNSON'S QUESTION ABOUT THE KIM-KOSTRIKIN GROUP

YANGKOK KIM AND ANDREI VESNIN

ABSTRACT. In this paper, we shall prove that the Kim-Kostrikin group is isomorphic to a hyperbolic orbifold group and so it is infinite.

1. Introduction

In the present note we study the balanced group $G_1(1)$ with the presentation

(*)
$$G_1(1) = \langle a, b, c, d \mid ada = cb, bdb = ac, cdc = ba, abc = 1 \rangle$$
,

that was called by D. Johnson the Kim-Kostrikin group.

The interest to the studying of the above group is motivated by the following. In [5] A. C. Kim and A. I. Kostrikin considered the infinite series $G_k(n)$, $n \geq 1$, k = 1, 2, 3, of groups with balanced presentation (the number of generators is equal to the number of relations). Considering the tessellations on the boundary of the three-dimensional sphere, they constructed the infinite series of closed orientable three-dimensional manifolds $M_k(n)$ where $n \geq 2$ for k = 1, 2, and $n \geq 1$ for k = 3, whose fundamental groups are isomorphic to $G_k(n)$. The first exceptional group $G_1(1)$ is exactly the Kim-Kostrikin group. The second exceptional group $G_2(1)$ is isomorphic to the free product of two groups of order three.

Moreover, they studied the algebraic structure of the groups $G_k(n)$, and proved that all group $G_k(n)$ are infinite except, possibly, the group $G_1(1)$.

Received September 16, 1996. Revised September 25, 1996.

¹⁹⁹¹ AMS Subject Classification: 20F32.

Key words and phrases: hyperbolic group, link, hyperbolic orbifold.

The second named author was supported in part by RFBR (Grant 95-01-01410) and KOSEF.

In [4] D. Johnson asked if the exceptional group $G_1(1)$ is infinite? The aim of the present note is to give the affirmative answer on the Johnson's question.

2. Theorem and Proof

THEOREM. The Kim-Kostrikin group $G_1(1)$ is infinite.

PROOF. We first eliminate c and d from the presentation (*). From the relations

$$c = b^{-1}a^{-1}, \quad d = ab^2a^2b,$$

we get the 2-generator presentation

$$G_1(1) = \langle a, b \mid a^2b^2a^2 = b^{-1}a^{-1}ba^{-1}b^{-1}, b^2a^2b^2 = a^{-1}b^{-1}ab^{-1}a^{-1} \rangle.$$

It is obvious from the presentation (*), that the group $G_1(1)$ has an automorphism ρ of order three such that

$$\rho(a) = b, \quad \rho(b) = c, \quad \rho(c) = a, \quad \rho(d) = d.$$

For the 2-generator presentation the automorphism ρ can be defined as

$$\rho(a) = b, \quad \rho(b) = b^{-1}a^{-1}.$$

Let us consider the split extension $\widehat{G}_1(1)$ of $G_1(1)$ by $\langle \rho \rangle$, that is a semidirect product of G and $\langle \rho \rangle \cong \mathbb{Z}_3$, and then, we get

$$\widehat{G}_1(1) = \langle a, b, \rho \mid a^2b^2a^2 = b^{-1}a^{-1}ba^{-1}b^{-1}.$$

$$(**) \qquad \qquad b^2a^2b^2 = a^{-1}b^{-1}ab^{-1}a^{-1}.$$

$$\rho a\rho^{-1} = b, \ \rho b\rho^{-1} = b^{-1}a^{-1}, \ \rho^3 = 1 \rangle.$$

Here we see that $a^{-1} = b\rho b\rho^{-1}$, whence $a = \rho b^{-1}\rho^{-1}b^{-1}$. And so,

$$\rho a = \rho^{-1} b^{-1} \rho^{-1} b^{-1} = (b\rho)^{-2}.$$

But, since $\rho a = b\rho$, we get $(\rho a)^3 = (b\rho)^3 = 1$. Denoting $\tau = \rho a$, we get $a = \rho^{-1}\tau$ and $b = \tau\rho^{-1}$. Then from the presentation (**), we get the relation

$$\left(\rho^{-1}\tau\right)^2\!\!\left(\tau\rho^{-1}\right)^2\!\!\left(\rho^{-1}\tau\right)^2 = \left(\tau\rho^{-1}\right)^{-1}\!\!\left(\rho^{-1}\tau\right)^{-1}\!\!\left(\tau\rho^{-1}\right)\!\!\left(\rho^{-1}\tau\right)^{-1}\!\!\left(\tau\rho^{-1}\right)^{-1},$$

that is equivalent to

$$\rho \tau \rho^{-1} \tau^{-1} \rho^{-1} \tau \rho \tau = \tau \rho \tau \rho^{-1} \tau^{-1} \rho^{-1} \tau \rho,$$

that can be written in the form

$$w\tau = \tau w$$
,

where

$$w = \rho \tau \rho^{-1} \tau^{-1} \rho^{-1} \tau \rho.$$

Therefore, the group $\widehat{G}_1(1)$ has the 2-generator presentation

$$\widehat{G}_1(1) = \langle \rho, \tau \mid w\tau = \tau w, \quad \rho^3 = \tau^3 = 1 \rangle.$$

Because $w = \rho^{i_1} \tau^{i_2} \rho^{i_3} \tau^{i_4} \rho^{i_5} \tau^{i_6} \rho^{i_7}$, where i_j is the sign of the number 3j by mod 16 on the segment [-8,8], the word w corresponds to the (8/3)-rational link, that is the well-known 2-component Whitehead link W [3]. In this case, the group

$$\pi(W) = \langle \rho, \tau \mid w\tau = \tau w \rangle,$$

where w is as above, is the group of the Whitehead link W. Comparing above presentations of $\widehat{G}_1(1)$ and $\pi(W)$, by [1], we see that the group $\widehat{G}_1(1)$ is the group of the orbifold W(3,3) whose underlying space is the three-dimensional sphere and singular set is the Whitehead link W with both branched indices equal three.

We recall [3], that the orbifold W(3,3) is a compact orientable hyperbolic orbifold. Whence its orbifold group $\widehat{G}_1(1)$ is hyperbolic, and so, infinite. The fact that the group $G_1(1)$ is the normal subgroup of $\widehat{G}_1(1)$ of index three, completes the proof.

REMARK. As we see from the proof, the Kim-Kostrikin group $G_1(1)$ is the fundamental group of the three-fold cyclic covering $M_1(1)$ of the three-dimensional sphere, branched over the Whitehead link W. The n-fold cyclic coverings, branched over the link W were studied in [2], and $M_1(1)$ is the manifold $M_{3,1}$ from [2]. Moreover, the Kim-Kostrikin group coincides with the group $\Gamma_{3,1}$ from Theorem 3.3 [2], that leads to another proof for the affirmative answer on the Johnson's question.

References

- A. Haefliger and N. D. Quach, Une presentation de groupe fundamental d'une orbifold, Asterisque 116 (1984), 98-107.
- H. Helling, A. C. Kim and J. L. Mennicke, Some Honeycombs in Hyperbolic 3-space, Comm. in Algebra 23 (1995), 5169-5206.
- 3. H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, A characterization of arithmetic subgroups of $SL(2,\mathbb{R})$ and $SL(2,\mathbb{C})$, Math. Nachr. 159 (1992), 245-270.
- 4. D. Johnson, Problem 3, Group Pub Forum problem Book, //www.bath.ac.uk.
- A. C. Kim and A. I. Kostrikin, Three series of 3-manifolds and their fundamental groups, Russian Akad. Sci. Dokl. Math. 340 (1995), 158-160.

Yangkok Kim
Department of Mathematics
Dongeui University
Pusan 614-714, Korea
E-mail address: ykkim@turtle.dongeui.ac.kr

Andrei Vesnin
Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-mail address: vesnin@arirang.math.pusan.ac.kr