ABSTRACT DIFFERENTIATION ON CERTAIN GROUPOIDS

JUNG RAE CHO

ABSTRACT. On certain groupoids called LIR-groupoids, one can define abstract definitions of continuity and differentiation of functions. Many properties of this abstract continuity and differentiation have analogy to the ordinary continuity and differentiation of real-valued functions.

1. Introduction

An LIR-groupoid (G, \cdot) is a set G equipped with a binary operation "·" satisfying the following three identical relations:

(1.1)
$$\begin{cases} (x \cdot y) \cdot z = (x \cdot z) \cdot y & \text{(Left-normal law)} \\ x \cdot x = x & \text{(Idempotent law)} \\ x \cdot (y \cdot z) = x \cdot y. & \text{(Reduction law)} \end{cases}$$

The acronymous name "LIR-groupoid" from the above identities and much works on those groupoids can be found in [5], [6] and [7]. But certain examples of LIR-groupoids appeared in [4] before the name was invented. It is easy to see that LIR-groupoids may be characterized as groupoids satisfying the idempotent law, the reduction law and the identity

$$(x \cdot y) \cdot (z \cdot t) = (x \cdot z) \cdot (y \cdot t)$$
 (Medial law)

instead of the left-normal law. In fact, assuming (1.1), we have $(x \cdot y) \cdot (z \cdot t) = (x \cdot y) \cdot z = (x \cdot z) \cdot y = (x \cdot z) \cdot (y \cdot t)$, for all element x, y, z, t of the

Received July 13, 1996. Revised October 4, 1996.

1991 AMS Subject Classification: 08A99, 20N02.

Key words and phrases: LIR-groupoid, medial, differential groupoids.

groupoid. Conversely, if we assume the idempotent law, the reduction law and the medial law, then $(x \cdot y) \cdot z = (x \cdot y) \cdot (z \cdot t) = (x \cdot z) \cdot (y \cdot t) = (x \cdot z) \cdot y$ for all element x, y, z, t of the groupoid, yielding the left-normal law.

In the present note, we will study how an LIR groupoid is obtained from a differential group and how abstract differentiation and continuity can be defined on LIR-groupoids, mainly based on [7]. From now on, we will use the simpler notations G for (G, \cdot) and xy for $x \cdot y$ if it causes no confusion doing so.

2. Two relations on LIR-groupoids

Let G be an LIR-groupoid. For each element y of G, we define the right translation $R_y: G \to G$ by $R_y(x) = xy$ for all $x \in G$. Because of the idempotent and medial laws, we have $R_y(ab) = (ab)y = (ab)(yy) = (ay)(by) = R_y(a)R_y(b)$ for all $a, b \in G$. That is, R_y is an endomorphism of G. The set $B = \{R_y \mid y \in G\}$ may not be closed under composition, but it generates a submonoid R(G) of the endomorphism monoid End(G). By the left-normal law, R(G) is commutative. The following lemma is easy (see [1] and [2]).

LEMMA 2.1. Let (G, \cdot) be an LIR-groupoid and $\operatorname{End}(G)$ be its endomorphism monoid under composition. Define a binary operation '*' on $\operatorname{End}(G)$ by

$$(\phi * \psi)(x) = \phi(x) \cdot \psi(x)$$

for all $x \in G$. Then (End(G), *) is a medial groupoid.

The map $R: (G, \cdot) \to (\operatorname{End}(G), *)$ defined by $y \mapsto R_y$ is a groupoid homomorphism, because $R_{xy}(a) = a(xy) = (aa)(xy) = (ax)(ay) = R_x(a) \cdot R_y(a) = (R_x * R_y)(a)$ for all $a \in G$. The image (B, *) of this homomorphism is a left-zero semigroup, that is, a semigroup satisfying the identity xy = x, because $(R_x * R_y)(a) = R_x(a) \cdot R_y(a) = (ax)(ay) = (aa)(xy) = a(xy) = ax = R_x(a)$ for all $a \in G$ by (1.1), yielding $R_x * R_y = R_x$. The kernel γ of the homomorphism R is a congruence relation on R, and elements R, R in R are said to be cocyclic if $R \equiv_{\gamma} y$. Thus R and R are cocyclic if they define the same right multiplication,

and $xy = R_y(x) = R_x(x) = xx = x$ in this case. Thus each congruence class of γ is a left-zero semigroup as a subgroupoid of G. Being isomorphic to (B, *), G/γ is a left-zero semigroup.

For an element x of (G,\cdot) , the *orbit* of x is defined to be the set $R(G)x=\{\theta(x)\mid \theta\in R(G)\}$. We define a relation β on G by $x\equiv_{\beta}y$ if and only if there is an element z in the intersection of the orbit of x and the orbit of y, i.e., there are ϕ,ψ in R(G) such that $\phi(x)=\psi(y)$. Two elements related by β are said to be *cobordic*, and β is called the *cobordism relation*. For every x,y in G, $xy\equiv_{\beta}x$ because $R_1(xy)=(xy)1=xy=R_y(x)$, where 1 is the identity element of the monoid R(G). Thus, $[x]_{\beta}[y]_{\beta}=[x]_{\beta}$ for all x,y in G. That is, G/β is a left-zero semigroup.

PROPOSITION 2.2. The cobordism relation β is the smallest congruence relation on (G, \cdot) such that G/β is a left-zero semigroup.

PROOF. By definition, β is easily seen to be transitive and symmetric. Suppose, $x \equiv_{\beta} y$ and $y \equiv_{\beta} z$. Then there are θ, η, ϕ, ψ in R(G) such that $\theta(x) = \eta(y)$ and $\phi(y) = \psi(z)$. Since R(G) is commutative, we have $\phi\theta(x) = \phi\eta(y) = \eta\phi(y) = \eta\psi(z)$, and so $x \equiv_{\beta} z$. Thus β is transitive, hence β is an equivalence relation. Suppose that $x \equiv_{\beta} y$ and $t \equiv_{\beta} u$. Then $xt \equiv_{\beta} x \equiv_{\beta} y \equiv_{\beta} yu$, implying $xt \equiv_{\beta} yu$, which proves that β is a congruence relation. Finally, suppose α is a congruence relation such that $(G/\alpha, \cdot)$ is a left-zero semigroup. Suppose $x \equiv_{\beta} y$ with $x\theta = y\eta$ for some θ, η in R(G), and assume $\theta = R_{a_1} \cdots R_{a_m}$ and $\eta = R_{b_1} \cdots R_{b_n}$. Then

$$[x]_{\alpha} = (\cdots([x]_{\alpha}[a_m]_{\alpha})\cdots)[a_1]_{\alpha} = [(\cdots(xa_m)\cdots)a_1]_{\alpha}$$

$$= [R_{a_1}\cdots R_{a_m}(x)]_{\alpha} = [\theta(x)]_{\alpha} = [\eta(y)]_{\alpha} = [R_{b_1}\cdots R_{b_n}(y)]_{\alpha}$$

$$= [(\cdots(yb_n)\cdots)b_m]_{\alpha} = (\cdots([y]_{\alpha}[b_n]_{\alpha})\cdots)[b_1]_{\alpha} = [y]_{\alpha}$$

because of the reduction law. So, $x \equiv_{\alpha} y$. Thus, β is contained in α .

Since G/γ is a left-zero semigroup, β is smaller than γ as a corollary to the above theorem. Thus, cobordic elements are cocyclic.

By the terminology of Mac Lane [3], a differential group (K, +, d) is an abelian group (K, +) together with a group endomorphism d satisfying

 $d^2 = 0$. If (K, +, d) is a differential group, then elements of Ker d are called *cycles* and elements of Im d are called the *boundaries*. There is an easy way of associating an LIR-groupoid with a differential group, as the following proposition shows.

PROPOSITION 2.3. ([7]) Let (K, +, d) be a differential group. Define a binary operation "·" on K by $x \cdot y = x - dx + dy$ for all x, y in K. Then (K, \cdot) is an LIR-groupoid.

As a result of the above proposition, LIR-groupoids are occasionally called differential groupoids [7], and the groupoid defined in the above proposition is called the differential groupoid associated with the differential group (K, +, d). As in the homology theory of groups or complexes, the following hold.

THEOREM 2.4. ([7]) Let (K, +, d) be a differential group and (K, \cdot) be its associated differential groupoid. Then, for any x, y in K,

- (1) x and y are cocyclic if and only if x y is a cycle, and
- (2) x and y are cobordic if and only if x y is a boundary.

3. Differentiation

Let **R** be the set of all real numbers and d be any symbol which does not belong to **R**. Put $\mathbf{R}[d] = \{a+dx \mid a, x \in \mathbf{R}\}$ and define an addition and a multiplication on $\mathbf{R}[d]$ by (a+dx)+(b+dy)=(a+b)+d(x+y) and (a+dx)(b+dy)=(ab)+d(ay+bx), respectively, for all a,b,x,y in **R**. Then $\mathbf{R}[d]$ becomes a commutative ring with unity, called the ring of the dual numbers over **R**. Note that $d\mathbf{R}$ is an ideal of **R** and $\mathbf{R}[d] = \mathbf{R} \oplus d\mathbf{R}$. The element d has the property $d^2 = 0$ and d is called the differential. The elements of $d\mathbf{R}$ are called infinitesimal elements of $\mathbf{R}[d]$.

Note that d acts as an endomorphism of the abelian group $(\mathbf{R}[d], +)$, and $(\mathbf{R}[d], +, d)$ is a differential group. Let $(\mathbf{R}[d], \cdot)$ be the differential groupoid associated with it. By the elementary calculus, if $f : \mathbf{R} \to \mathbf{R}$ is a differentiable function, then, at each $a \in \mathbf{R}$, we can approximate f with a linear function f_a such that

(3.1)
$$f_a(a+x) = f(a) + f'(a)x$$

for all $x \in \mathbf{R}$. The graph of f_a is the tangential line of the graph of f at a. The following is obvious.

LEMMA 3.1. Let $f: \mathbf{R} \to \mathbf{R}$ be a differentiable function and f_a be the linear function defined in (3.1), then $f_a(a) = f(a)$ and $f'_a(x) = f'(a)$ for all $x \in \mathbf{R}$.

Using this linear approximation, we can extend any function $f : \mathbf{R} \to \mathbf{R}$ to a function $f : \mathbf{R}[d] \to \mathbf{R}[d]$, using the same notation, by the rule

$$(3.2) f(a+dx) = f(a) + f'(a)dx$$

for all $a, x \in \mathbf{R}$. Because $f_a(a+dx) = f_a(a) + f'_a(a)dx = f(a) + f'(a)dx = f(a+dx)$ by the previous lemma and (3.2), we can say that if a is in \mathbf{R} and $u \in \mathbf{R}[d]$ is infinitesimally close to a then $f(u) = f_a(u)$. That is, the approximation f_a is exact for the infinitesimally close neighborhood of a.

Let ϕ and ψ be the projections of $\mathbf{R}[d]$ onto \mathbf{R} and $d\mathbf{R}$, respectively, that is, for every dual number u = a + dx, $u\phi = a$ and $u\psi = dx$. Thus, $u = u\phi + u\psi$.

THEOREM 3.2. Let $f: \mathbf{R} \to \mathbf{R}$ be a differentiable function, and extend it to $f: \mathbf{R}[d] \to \mathbf{R}[d]$ by the rule in (3.2). Then, for any u, v in $\mathbf{R}[d]$, $f(u \cdot v) = f(u) \cdot f_a(v)$. Furthermore, for each $a \in \mathbf{R}$, if $g: \mathbf{R}[d] \to \mathbf{R}[d]$ satisfies the equation $f(a \cdot v) = f(a) \cdot g(v)$ for every v, then g is infinitesimally close to f_a .

PROOF. Let u = a + dx and v = b + dy. Due to Lemma 3.1, we have

$$f_a(v) = f_a(b+dy) = f_a(b) + f'_a(b) dy = f_a(a+(b-a)) + f'_a(b) dy$$

= $f_a(a) + (b-a)f'_a(a) + f'_a(b) dy = f(a) + (b-a)f'(a) + f'(a) dy$
= $f(a) + f'(a) (b+dy-a) = f(a) + f'(a) (v-a)$.

Thus,

$$f(u) \cdot f_{a}(v) \equiv f(a+dx) \cdot f_{a}(v)$$

$$= (f(a) + f'(a) dx) \cdot (f(a) + f'(a) (v-a))$$

$$= f(a) + f'(a) dx - d(f(a) + f'(a) dx) + d(f(a) + f'(a) (v-a))$$

$$= f(a) + f'(a) dx - df(a) + f'(a) d^{2}x + df(a) + f'(a) d(b+dy-a)$$

$$= f(a) + f'(a) d(x-a+b)$$

$$= f(a+d(x-a+b))$$

$$= f(a+dx) - d(a+dx) + d(b+dy)$$

$$= f((a+dx) \cdot d(b+dy))$$

$$= f(u \cdot v).$$

Suppose the additional condition holds, then, for all v in $\mathbf{R}[d]$,

$$f'(a)dv = f(a+dv) - f(a) = f(a-da+d(a+v)) - f(a)$$

$$= f(a \cdot (a+v)) - f(a) = f(a) \cdot g(a+v) - f(a)$$

$$= f(a) - df(a) + dg(a+v) - f(a) = dg(a+v) - df(a).$$

So d(g(a+v)-f'(a)v-f(a))=0, and g(a+v) is cocyclic with f'(a)v+f(a), which is equal to $f_a(a+v)$. That is, g is infinitesimally close to f_a .

Let (G, \cdot) be a differential groupoid and x is an element of G. A function $f: G \to G$ is called differentiable at x if there is an endomorphism f_x of (G, \cdot) such that $f(x \cdot y) = f(x) \cdot f_x(y)$ for all in y in G. Such an endomorphism f_x is called a derivative of f at x. If f is differentiable at every point of G, then f is said to be differentiable on G. It should be noted that for elementary calculus every differentiable real valued function has a unique derivative, but, for an abstract differentiable function here, there may be many distinct derivatives.

EXAMPLE. (1) If (G, \cdot) is a left-zero semigroup, then every function f is differentiable at every point of G, and every endomorphism is a derivative of f. In fact, for any x, y in G and any endomorphism g, we have $f(x \cdot y) = f(x) = f(x) \cdot g(y)$.

(2) Every endomorphism of (G,\cdot) is differentiable and one of its own derivatives.

THEOREM 3.3. ([7]) If $f: G \to G$ is differentiable at x and $g: G \to G$ is differentiable at f(x), then the composition gf is differentiable at x and $g_{f(x)}f_x$ can be taken for $(gf)_x$.

PROOF. For all $x, y \in G$, $(gf)(x \cdot y) = g(f(x) \cdot f_x(y)) = (gf)(x) \cdot (g_{f(x)}f_x)(y)$. Since $g_{f(x)}f_x$ is an endomorphism, $g_{f(x)}f_x$ can be taken for $(gf)_x$ by the definition.

Let (G, \cdot) be a differential groupoid and x is an element of G. A function $f: G \to G$ is called *continuous* at x if $(x,y) \in \beta$ implies $(f(x), f(y)) \in \beta$ for every $y \in G$, where β is the cobordism relation defined in section 2. If f is continuous at every point of G, then f is said to be continuous on G.

THEOREM 3.4. Let (G,\cdot) be a differential groupoid and $f:G\to G$ be any function.

- (1) If f is differentiable at each $y \in [x]_{\beta}$, then it is continuous at x.
- (2) If f is differentiable, then it is continuous.

PROOF. Suppose f is differentiable at each $y \in [x]_{\beta}$. First, we show that, for each $y \in [x]_{\beta}$ and $\theta \in R(G)$, there is θ_y in R(G) such that $f(\theta(y)) = \theta_y(f(y))$, by the induction on the complexity of θ . For empty word 1, it is trivial. Suppose this is true for θ and prove it for $R_z\theta$ for each z. Since $\theta(y) \equiv_{\beta} y \equiv_{\beta} x$, f is differentiable at $\theta(y)$. Thus, for any z in G, we have $f(R_z(\theta(y))) = f(\theta(y) \cdot z) = f(\theta(y)) \cdot f_{\theta(y)}(z) = \theta_y(f(y)) \cdot f_{\theta(y)}(z) = R_{f_{\theta(y)}(z)}(\theta_y(f(y)))$. So, we can take the endomorphism $R_{f_{\theta(y)}(z)}\theta_y$ for $(R_z\theta(y))_y$.

Now suppose $y \equiv_{\beta} x$, and assume $\phi(x) = \psi(y)$ for some ϕ, ψ in R(G). Then, by what was shown above, $\phi_x(f(x)) = f(\phi(x)) = f(\psi(y)) = \psi_y(f(y))$, and so $f(x) \equiv_{\beta} f(y)$. Thus, f is continuous at x. Thus, (1) is proved, and (2) is an obvious consequence of (1).

References

- 1. I. Etherington, Groupoids with additive endomorphisms, Amer. Math. Monthly 65 (1958), 596-601.
- 2. Trevor Evans, Properties of algebras almost equivalent to identities, J. London Math. Soc. 37 (1962), 53-59.
- 3. S. Mac Lane, Homology, Springer, Berlin, 1963.

- 4. J. Plonka, On algebras with n distinct n-ary operations, Alg. Univ. 1 (1971), 73-79.
- 5. A. B. Romanowska, On some representations of groupoid modes satisfying the reduction law, Demon. Math. 21 (1988), 943-960.
- 6. A. B. Romanowska and B. Roszkowska, On some groupoid modes, Demon. Math. 20 (1987), 277-290.
- A. B. Romanowska and J. D. H. Smith, Differential groupoids, Contribution to general algebra 7, Verlag Hölder-Pichler-Temsky, Wien 1991 - Verlag B.G. Teubner, Stuttgart, 283-290.

Department of Mathematics Pusan National University Pusan 609–735, Korea