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ABSTRACT DIFFERENTIATION
ON CERTAIN GROUPOIDS

JunG RAE CHO

ABSTRACT. On certain groupoids called LIR-groupoids, one can define
abstract definitions of continuity and differentiation of functions. Many
properties of this abstract continuity and differentiation have analogy to
the ordinary continuity and differentiation of real-valued functions.

1. Introduction

An LIR-groupoid (G,-) is a set G equipped with a binary operation
“.” satisfying the following three identical relations :

(z - y)-z=(z-2)-y (Left-normal law)
(1.1) rr=cz (Idempotent law)
r-(y-z)=1z-y. (Reduction law)

The acronymous name “LIR-groupoid” from the above identities and
much works on those groupoids can be found in [5], [6] and [7]. But
certain examples of LIR-groupoids appeared in [4] before the name was
invented. It is easy to see that LIR-groupoids may be characterized
as groupoids satisfying the idempotent law, the reduction law and the
identity

(z-y)-(z-t)=(z-2)-(y-1t) (Medial law)

instead of the left-normal law. In fact, assuming (1.1), we have (z - y)-
(z-t)=(z-y) z=(z-2)-y=(z-2) (y-t), for all element z,y, z,t of the
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groupoid. Conversely, if we assume the idempotent law, the reduction
law and the medial law, then (z-y)-z = (z-y)-(2-t) = (z-2)-(y-t) = (z-2)-y
for all element z,y, z,t of the groupoid, yielding the left-normal law.

In the present note, we will study how an LIR groupoid is obtained
from a differential group and how abstract differentiation and continuity
can be defined on LIR-groupoids, mainly based on [7]. From now on, we
will use the simpler notations G for (G,-) and zy for z - y if it causes no
confusion doing so.

2. Two relations on LIR-groupoids

Let G be an LIR-groupoid. For each element y of G, we define the
right transletion Ry : G — G by Ry(z) = zy for all z € G. Because of
the idempotent and medial laws, we have R,(ab) = (ab)y = (ab)(yy) =
(ay)(by) = Ry(a)Ry(b) for all a,b € G. That is, R, is an endomorphism
of G. The set B = {R, | y € G} may not be closed under composi-
tion, but it generates a submonoid R(G) of the endomorphism monoid
End(G). By the left-normal law, R(G) is commutative. The following
lemma is easy (see [1] and [2]).

LEMMA 2.1. Let (G,-) be an LIR-groupoid and End(G) be its en-
domorphism monoid under composition. Define a binary operation ‘*’

on End(G) by
(¢ x¥)(z) = ¢(z) - ¥(z)

for all x € G. Then (End(G), *) is a medial groupoid.

The map R : (G,-) — (End(G),*) defined by y +» R, is a groupoid
homomorphism, because R,y (a) = a(zy) = (aa)(zy) = (az)(ay) =
R.(a) - Ry(a) = (R; * Ry)(a) for all @ € G. The image (B,«) of
this homomorphism is a left-zero semigroup, that is, a semigroup sat-
isfying the identity zy = z, because (R, * Ry)(a) = R.(a) - Ry(a) =
(az)(ay) = (aa)(zy) = a(zy) = az = R.(a) for all a € G by (1.1), yield-
ing R, xR, = R,. The kernel v of the homomorphisin R is a congruence
relation on G, and elements z,y in G are said to be cocyclic if x =, y.
Thus = and y are cocyclic if they define the same right multiplication,
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and zy = Ry(z) = R.(z) = zz = z in this case. Thus each congru-
ence class of v is a left-zero semigroup as a subgroupoid of G. Being
isomorphic to (B, *), G/¥ is a left-zero semigroup.

For an element z of (G,-), the orbit of z is defined to be the set
R(G)r = {6(x) | § € R(G)}. We define a relation 3 on G by z =3 y
if and only if there is an element z in the intersection of the orbit of =
and the orbit of y, i.e., there are ¢, in R(G) such that ¢(z) = ¥(y).
Two elements related by g are said to be cobordic, and 3 is called the
cobordism relation. For every z,y in G, zy =3 z because R;(zy) =
(zy)l = zy = Ry(zr), where 1 is the identity clement of the monoid
R(G). Thus, [z][y]g = [z]g for all z,y in G. That is, G/j3 is a left-zero

semigroup.

PROPOSITION 2.2. The cobordism relation 3 is the smallest congru-
ence relation on (G, -) such that G/ is a left-zero semigroup.

PROOF. By definition, J is easily seen to be transitive and symmetric.
Suppose, x =5 y and y =4 z. Then there are 8,7, ¢, ¥ in R(G) such that
6(r) = n(y) and é(y) = ¥(z). Since R(G) is commutative, we have
¢8(z) = on(y) = no(y) = n¥(z), and so ¢ =4 z. Thus 3 is transitive,
hence 3 is an equivalence relation. Suppose that ¢ =4 y and t =3 u.
Then rt =g * =3 y =4 yu, implying 2t =4 yu, which proves that 3 is
a congruence relation. Finally, suppose « is a congruence relation such
that (G/a,-) is a left-zero semigroup. Suppose xz =5 y with z6 = yn
for some 6,7 in R(G), and assume § = R,, -+ R, and n =Ry, -+ Ry,.
Then

[#la = (- ([zlalam]a) - Har]la = [(- - (zam) - - )ai]a
= [Rtn Ry (2)]a = [G(x)]a = [n(y)]a = {Rbl Ry, (W)]a
= [ (¥bn)  Dbmla = (- ([Wlalbrla) - - )[b1]a = [¥]a

because of the reduction law. So, z =, y. Thus, 3 is contained in a.

Since G /v is a left-zero semigroup, § is smaller than v as a corollary
to the above theorem. Thus, cobordic elements are cocyclic.

By the terminology of Mac Lane [3], a differential group (K, +,d) is an
abelian group (K, +) together with a group endomorphism d satisfying
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d*> = 0. If (K,+,d) is a differential group, then elements of Kerd are
called cycles and elements of Imd are called the boundaries. There is
an easy way of associating an LIR-groupoid with a differential group, as
the following proposition shows.

PROPOSITION 2.3. ([7]) Let (K, +,d) be a differential group. Define
a binary operation “” on K by z -y = z — dz + dy for all r,y in K.
Then (K,-) is an LIR-groupoid.

As a result of the above proposition, LIR-groupoids are occasion-
ally called differential groupoids [7], and the groupoid defined in the
above proposition is called the differential groupoid associated with the
differential group (A, +,d). As in the homology theory of groups or
complexes, the following hold.

THEOREM 2.4. ([7]) Let (K,+,d) be a differenrial group and (K, -)
be its associated differential groupoid. Then, for any z, y in K,

(1) z and y are cocyclic if and only if x — y is a cycle, and
(2) = and y are cobordic if and only if x — y is a boundary.

3. Differentiation

Let R be the set of all real numbers and d be any symbol which does
not belong to R. Put R[d] = {a+dz | a, € R} and define an addition
and a multiplication on R[d] by (a+dz)+ (b+dy) = (a+b) + d(z +y)
and (a + dz)(b + dy) = (ab) + d(ay + br), respectively, for all a, b, z, y
in R. Then R[d] becomes a commutative ring with unity, called the
ring of the dual numbers over R. Note that dR is an ideal of R and
R[d] = R @ dR. The element d has the property d? = 0 and d is called
the differential.  The elements of dR are called infinitesimal elements

of RId].

Note that d acts as an endomorphism of the abelian group (R[d], +),
and (R[d], +,d) is a differential group. Let (R[d],-) be the differential
groupoid associated with it. By the elementary calculus, if f: R — R
is a differentiable function, then, at each a € R, we can approximate f
with a linear function f, such that

(3.1) fala+z) = f(a) + f'(a)x
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for all z € R. The graph of f, is the tangential /ine of the graph of f at
a. The following is obvious.

LEMMA 3.1. Let f : R — R be a differentiable function and f, be
the linear function defined in (3.1), then f,(a) = f(a) and f.(z) = f'(a)
for all z € R.

Using this linear approximation, we can extend any function f : R —
R to a function f : R[d] — R]d], using the same notation, by the rule

(3.2) fla+de) = f(a) + f/(a)de

foralla, z € R. Because f,(a+dz) = fo.(a)+fi(a)dz = f(a)+f'(a)dx =
f(a + dx) by the previous lemma and (3.2), we can say that if @ is in
R and u € R[d] is infinitesimally close to a then f(u) = f,(u). That is,
the approximation f, is exact for the infinitesimally close neighborhood
of a.

Let ¢ and ¢ be the projections of R[d] onto R and dR, respectively,
that is, for every dual number v = a + dx, u¢ = a and uvw = dr. Thus,
u = u¢ + urp.

THEOREM 3.2. Let f : R — R be a differentiable function, and
extend it to f : R[d] — R[d] by the rule in (3.2). Then, for any u, v in
R[d], f(u-v) = f(u)- fo(v). Furthermore, for each a € R, if g : R[d] —
R/[d] satisfies the equation f(a-v) = f(a)- g(v) for every v, then ¢ is
infinitesimally close to f,.

ProoF. Let u = a+ dz and v = b+ dy. Due to Lemma 3.1, we have

fa(v) = fa(b+dy) = fu(b) + fo(b)dy = fala + (b~ a)) + f5(b) dy
= fala) + (b —a)fya) + fo(b)dy = f(a) + (b —a)f'(a) + f'(a) dy
= fla)+ f'(a) (b+ dy — a) = f(a) + f'(a) (v — a).
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Thus,

f(u) - fa(v) =f(a+dz) - fo(v)
=(f(a) + f'(a)dz) - (f(a) + f'(a) (v ~ a))
=f(a) + f'(a)dz — d(f(a) + f'(a) dz) + d(f(a) + f'(a) (v — a))
=f(a)+ f'(a)dz — df(a) + f'(a) d®z + df (a] + f'(a) d(b+ dy — a)
=fla)+ f'(a)d(z —a +b)
=fla+d(z — a+1b))
=f((a +dz) — d(a + dz) + d(b + dy))
=f((a +dz) - d(b + dy))
=f(u-v).

Suppose the additional condition holds, then, for all v in R|[d],

fl(a)dv = f(a+dv)) - f(a) = f(a -~ da+d(a+ v)) — f(a)
= fla-(a+v)) - fla) = f(a) - gla+ v - f(a)
= fla) = df(a) + dg(a +v) — f(a) = dg(a + v) — df(a).

So d(g(a+v)— f'(a)v - f(a)) = 0, and g(a+ v) is cocyclic with f'(a)v +
f(a), which is equal to f,(a+wv). That is, g is infinitesimally close to f,.

Let (G, ) be a differential groupoid and z is an element of G. A func-
tion f: G — G is called differentiable at z if there is an endomorphism
fz of (G,-) such that f(z-y) = flz)- fz(y) for all in y in G. Such an
endomorphism f; is called a derivative of f at z. If f is differentiable at
every point of G, then f is said to be differentiable on G. It should be
noted that for elementary calculus every differentiable real valued func-
tion has a unique derivative, but, for an abstract differentiable function
here, there may be many distinct derivatives.

EXAMPLE. (1) If (G,-) is a left-zero semigroup, then every function
f is differentiable at every point of G, and every endomorphism is a
derivative of f. In fact, for any , y in G and any endomorphism g, we
have f(z-y) = f(z) = f(z) - g(y)

(2) Every endomorphism of (G, -) is differentiable: and one of its own
derivatives.
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THEOREM 3.3. ([7]) If f : G — G is differentiable at r and g : G — G
is differentiable at f(z), then the composition ¢f is differentiable at
and g, f, can be taken for (gf),.

PROOF. For all z,y € G, (¢f )z - y) = g(f(z) fa(y)) = (¢9f)z)-
(97(z)fx)(y)- Since gs(z)f is an endomorphism, g (,)f: can be taken for

(9f)}: by the definition.

Let (G,-) be a differential groupoid and z is an element of G. A
function f : G — G is called continuous at a if (z,y) € § implies
(f(z),f(y)) € B3 for every y € G, where /3 is the cobordism relation
defined in section 2. If f is continuous at every point of G, then f is said
to be continuous on G.

THEOREM 3.4. Let (G,-) be a differential groupoid and f : G — G
be any function.

(1) If f is differentiable at each y € [z]g, then it is continuous at z.
(2) If f is differentiable, then it is continuous.

PROOF. Suppose f is differentiable at each y € [z]s. First, we show
that, for each y € [z]s and 8 € R(G), there is 8, in R(G) such that
f(6(y)) = 6,(f(y)), by the induction on the complexity of §. For empty
word 1, it is trivial. Suppose this is true for 8 and prove it for R,8 for each
z. Since 8(y) =3 y = =, f is differentiable at (y). Thus, for any z in G,
we have F(R.(8(y))) = f(8(y)-2) = F(B(y)) For2) = Oy F(0)- Fory) ()
= Ry, . ()(8,(f(y))). So, we can take the endomorphism Ry, ()8 for
(R:6(y))y-

Now suppose y =3 , and assume ¢(z) = ¥(y) for some ¢,y in R(G).
Then, by what was shown above, ¢.(f(z)) = f(é(z)) = f(¥(y)) =
Yy (f(y)), and so f(z) =5 f(y). Thus, f is continuous at r. Thus, (1) is
proved, and (2) is an obvious consequence of (1).
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