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MINIMUM PERMANENTS ON CERTAIN FACES OF Q,

S1-Ju KiM AND JAE-BONG SHIM

ABSTRACT. In this paper we investigate the minimum permanents and
minimizing matrices on the faces Q(D) of Q, for two fully indecom-
posable (0,1) matrices D which are slight changes of both a convertible
matrix and the matrix with zero trace.

1. Introduction

An n x n matrix with nonnegative entries is called a doubly stochastic
matrix if all of its row sums and column sums are equal to 1. The set of
all n-square doubly stochastic matrices is denoted by 2.

Let D = [d;;] be an n-square (0,1) matrix, and let

YD) = {X = [zi;] € Qp|2,; = 0whenever d;; = 0}.

Then (D) is a face of the polytope §2, for D with positive permanent.
Since it is compact, there exists a matrix A € (D) such that perA <
perX for all X € Q(D). Such a matrix A is called a minimizing matrix of
D). In 1981, Falikman and Egorycév([2] proved the van der Waerden
conjecture: if 4 € Q,, then

n!
perA > perd, = —
nn

where J,, is n-square matrix all of whose entries equal % After the res-
olution of the conjecture, there has been interested in determining min-
imizing matrices and minimum permanents on faces of ,, [3,4,5,6,7,8].
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Recall that an n-square nonnegative matrix is said to be fully inde-
composable if it contains no kx(n—k) zero submatrix fork = 1,--- ,n—1.
Brualdi[3] defined an n-square (0,1) matrix D to be cohesive if there is
a matrix Z in the interior of (D) for which perZ = min{perX | X €
UD)}. The barycenter b(D) of Q(D) is given by b(D) = 521713 > P,

P<D

where the summation extends over the set of all permutation matrices
P with P < D, and perD is their number. An n-square (0,1)-matrix D
said to be barycentric if perb(D) = min{perX | X < Q(D)}.

In this paper we investigate the minimum permanents and minimizing
matrices on the faces Q(D) of §, for two fully irdecomposable (0,1)
matrices D which are slight changes of both a convertible matrix and
the matrix with zero trace.

Let I,, denote the identity matrix of order n and l=t Jipland Ok ,) be
the & x p matrix all of whose entries are equal to 1(and 0) respectively.

2. Minimum Permanent of QEx,)

We shall rewrite the following well-known results [5] as Lemmas before
we state our first result.

LEMMA 1. If D = [d;;] be a n-square fully indecomposable (0,1)
matrix, and A = [a;;] be a minimizing matrix on Q{D), then A is fully
indecomposable.

LEMMA 2. Let A = [a;;] be a minimizing matrix on (D). Then for
(7,7) such that d;; = 1,
perA(i | j) =perA if ai; >0

perA(i|j) > perA if a;;=0.

LEMMA 3. If A is a minimizing matrix on Q(D), iy, - ,i; rows(co-
lumns) have the same Z pattern, then the matrix obtained from A by re-
placing each of these rows (columns) by the average of the t rows(colum-
ns) is also minimizing in Q(D).
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Consider the (k 4 p + 1)-square (0,1) matrix E} p;

1 | 1 1 I 1) 0 \
O
0

: Tk .k Jkp

Evp=| 0 | |

T
1

: Op i I,

L )

Notice that if the submatrix Ey ,[2,3,--- ,k+1]2,3,--- .k + 1] of E,
is replaced by Ik, then the new matrix EY | is convertible for some p, k.
That is, for some (1,—1) matrix H, per(E} ) = det(E} , o H) where o
means the Hadamard(entrywise) product.

Now we determine the minimum permanents on Q(Ey ,).

THEOREM 2.1. For k > 2,

(1) Egp is cohesive for p=1,2, and the minimum permanent of the

face QU Eg p) 1s

p+ka—1
p

kla*( )7,

2k?—k+p—+/(4p+1)k2 —2pk+p?
2kZ(k—1) :

(2) Exp is not cohesive for p > 3, and the minimum permanent of
QEk,p) is

where a =

k — 1)k—1 (p - 1)?'-1 )

(k—1)Y 12 I

PRrROOF. By Lemma 3, we may assume that a minimizing matrix of
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QY Ek,p) is of the form
(1)

z | b b 1 0 0
(o LT )
O a ce s a Iy ‘IP
Ak,pz 0 ' a P a I :I/'] P _'L-p s
— | e I e
Y1 Cq 0
w O R
Yp | | O Cp

where 2 +kb=2+4+3"_ =1, b+ka=ka+3? =1, kri+ci=1,

yite, =1, fore=1,---,p.
By Lemma 1 and Lemma 2, perApy, = perAg,(i+k+1 | 1)

fori=1,---,p.
Thus

kbzqicy--- cpakk! = kbzycics - - cpakk!

= kbz,cy - - -cp_]akk!

From this equation and (1), we have

Ty =Ty=--- =1,
c1=cp=---=¢
Y=Yz =" =Yp.
Hence
z=1—k+ k?a, b=1- ka, x,:—l;liq,
z:p—k-i—kza’ ygzk_kQG for i=1, p
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Since we should have b > 0 and 2z > 0 by Lemma 1,

k-—1< 1
%2 _a<%.

Thus

perdrp = (1 —k + k*a)perAx p(1| 1) + k(1 — ka)per Ay »(1 ] 2)
!
= —k—;;ak_l(p —k+ k)P HEY (1 - k)d®
p

+ k2(3k2 —2k+p+ 1)a2 — (37{:3 +pk+k—p— kz)a + kz}.

Let
(2)
|
fla) :I%ak‘l(kza: +p— k)P HEY (1 - k)a® + k3(3k* — 2k + p + 1)a?
— (3K +pk+k—p—kHa+ K}
Then perAg, = f(a), where —’5731 <a< %
For p =1,
fla) = (1~ k+ k%a)’kla* + k*(1 — ka)3kla*~!
= —kla* M {k(k — 1)a® — k%(3k? — 2k + 2)a?
+ (3% — k% 4+ 2k — 1)a — k%)
and

f'(a) = —k-kKla* " {k(k+2)a— (k= 1D)}H{k*(k—1)a—(2k* =k +1)a+k}.

2k% —k+1—+/5k2—2k+1

Thus f(a) = per Ay ; has the minimum value at a = T

under the condition k—k“,l <a< %
Similarly, for p = 2, f(a) = per A has the minimum value at

2 “, e —
a = 2k -k*z'i;(kvﬁ’;;—“”“ under the condition %,l <a< %
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Hence for p =1 or 2, f(a) = per Ag p has the minimum value at

2k’ —k+p-— V(4p + 1)k? — 2pk + p?
- 2k2(k — 1) ’

a

and
p+ ka —

perAygp, = perAg (1| 1) = kla*(——= )”.

Thus the corresponding entry in Ak p to each nonzero entry in Ej , is
nonzero.

Hence Ey , is cohesive.

For p > 3, differentiating f(a), we have

-1
flla) = —ki'—ak_z(kja +p— k)P HE k- 1)a’ + 'k —p— 2k%)a + k}

x {k*(p + k + 1)a® — 2k(k* — p)a + (k — 1)(k — p)}.
Now we put

p(a) = kza +p - ka
g(a) = k*(k —1)a® + (k — p — 2k¥)a + k,
r(a) = k*(p+ k +1)a® — 2k(k* - p)a + (k -- 1)(k — p).

Then the roots of r(a) =0 are

k*—p—/(p2—p+1)k2—(pZ+p)k+p2

a= P+
k2 —p+1/(p?—p+1)kZ—(p2+p)k+4p?
a3 = K (pThTD) :

the root of p(a)=01is a; = kT';E, and the roots of g¢(a) =0 are

_ 2K’ —k+p—\/(4p+1)k? —2pk+p?
a4 = 2K2(k—1)

_ 2K —ktpty/(ap+ 1)k = “2pktp’
as = 2k (k1)
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Notice that a1, az,as, a4 and as are real numbers. It is easy to show that
a3 is the largest real number among a;, a; and a;3. Hence we compare
az with k—k'_yl

k—1 k*—p+/(p? - p+1)k% — (p? + p)k + p?
% R2(p+ k+1)
1

= Be D (PF =D = Ve —p+ DE = (0 +p)k 7).

Let
g1(k) = (pk — 1)2 = {(p* — p + E* — (p* + p)k + p*}
=(p—1{k* +pk - (p+1)}.

Then ¢1(2) = (p — 1)(p +3) > 0, and g(k) = (p — 1)(2k + p) > 0 for
k> 2,p > 3. Thus we have
k-1

L2

az <

Now we compare a4 with k—k}l;

k=1 2k —k+p—+/(4p+ Dk* — 2pk + p?
k? 2k2(k — 1)

_ §k—2—(£—:—1—5[\/(4p k% — 2pk + p2 — {3k + (p — 2)}).
Now let
g2(k) = {(4p + 1)k* — 2pk + p*} — {3k + (p — 2)}*

= (4p - 8)k* — (8p— 12)k +4(p— 1)

=4{(p—2)k* — (2p -k +(p-- 1)}.
Then go(2) =4(p—3) >0 and g4(k) =8(p—-2)k—4(2p-3) >0
for ¥k > 2, p > 3. Hence

k-1 1
ay < = < as.

- k? k
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Therefore f(a) = perAy, (condition Bl <ac< 4) has the minimum
value at ¢ = ka and

perAgp = perAg p(l | 2)

= k-t e

pP

Since a = k—k_;l, z =0 and hence E} , is not cohesive. 0O

THEOREM 2.2. E, , is cohesive for any natura! number p, and the
minimum permanent of Q(E} ,) is

P
(p+ 1)t

PRrOOF. Without loss of generality, we may asume that a minimizing
matrix of Q(E; ,) is the form of

/ a | 1—a | 0 0 \
- e l e
1—a l—a
0 | a ! > 5
Arp = 1-a 0 ‘ pta—1 0 ’
P l P
\ 1= | o | o z+_—_1)
P )
where 0 < a < 1. Thus
- ~1
perA =a p+a )” —a)21 a(p+a -l
P

= (e tp= 1P (p+a— e +(1- )
_ 1%((1 +p— 1P (p+2)a® —3a+ 1)},

Let
fla)=(a+p—-1"{(p+2)a® - 3a +1}.
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Then
f'la) = (a+p-1)""{(p* +3p+2)a* + (2p* — p - 4)a — 2p + 2}.
Hence the minimum permanent is attained at a = p% and
_ I
pﬁT'Al’p = f(a) = W

3. Minimum Permanent of Q(Z,)

Let R, denote n x n(0,1) matrix with zero trace and off-diagonal
entries which are equal to 1, and let E;; be n x n matrix with 1in (¢, 7)
position and zeros elsewhere.

Henryk Minc[6] determined the minimum permanent of Q(C, ), where
Cn = Ry + E, p, under a plausible assumption that there exists a mini-
mizing matrix in (C,,) of the form

0 ¢ ¢ a

(c 0 ¢ a\

c ¢ 0 a
Xn(a) = '

c ¢ .- c 0 ¢ a

c ¢ ¢ - c 0 a

\a a a - a a b/

We consider Z, = C, — E, , — E,, 1, and make a plausible assumption

in Q(Z,). Let

[0 s o gk 0y
n;—z 0 c c
1
, — 0
(3) Znfa)=| "2 ° ,
c b
n_l—E c : c 0 b
\ 0 b b b a
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THEOREM 3.1. If a matrix of the form(3) is minimizing in Q(Z,), n >
4, then the minimum occurs only for

(n—3)?perD,_5 — (n— 2)(n — 4)perCr_y

“= (n—3)perDyp_g 4+ (n —2)perCy '

b — (n — 3)perCp_»
(n—3)?perDyp_2+ (n—2)perCr_o

. (n — 3)2pean-2

(n=2}{(n—-3)2%perD,_; +(n—2)perCp,_43}’

Moreover, min {perS | S € U Z,)} =

perCn—Z
n-—2

(n—3)%perD, _, jn=3
(n—2){(n—3)%perD,_2+ (n — 2)perC,_3} ’

(

where D,, = R, 4+ En_1,n-1 + Epn n.

PROOF. Since Z, is fully indecomposable, b # 0 and ¢ # 0 by Lemma
1. First we will prove a # 0. If not, then b = 71—1_—2 and ¢ = (_n:'rzl):('i_—'ﬂ

Hence 3 4
, n— n—
Zn = "yerDp—
perZn(0) =2y (-—3)" pe 2
and ) 4
n-—
Zn = ns n—2-

Since

perD, = perC, + perC,_;
= perR, + 2perR, 1 + perR, 1,

perZn(0) — perZ,(0)(n [ n)
(n—3)%perD,,_3 — (n —2)(n — 4)perCp_,

= Cn) " 2)(n = 3)

}>0

for n > 4, where C(n) = (Z5)" 72 - (2=4)" 4,
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Therefore
perZ,(0)(n | n) < perZ,(0).

This is contradictory to lemma 2. Hence a # 0.
Now, from Lemma 2, we have perZ,(a)(n | n; = perZ,(a)(2 | n) and
hence

1 n—23
4 n—3 g = ————
(4) ¢" perCh_o (n 2y

b 'perD,_s.
— ¢’ per 2

From (3) and (4), we have

b — perC,_o
B (n —3)perD,_, + perC’n 2
(n— 3)perC’n~2

- (n—3)%perD, o+ (n—2)perC,_y’

(n—3)perDy,_5 — (n ‘,2_‘)(:)-4)1)67‘0" 2
(n —3)perD,_,

_ (n—3)*perD,_3 — (n —2)(n — 4)perCy_2
B (n—3)?perD,,_2 + (n — 2)perC,.

a=1-(n—-2)b =

n—2

and
1 perCr_o
n—2 (n—3)2perD, 2+ (n — 2)perCyp—»
(n—3)%perD,_,
- (n—2){(n—3)%perD,_2+ (n — 2)perCp_3}

Consequently the minimum permanent in Q(Z,), under our assumption,
is

1
perZy(a) =perZy(a)(n|n) = " PperCr_y
n

-2
B perCn_g( (n—3)%perD, _, =
 n-2 ‘(n=2){(n—-3)2perDy_y + (n-- 2)perC,_ 3}
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THEOREM 3.2. Z, is not barycentric for n > 4.

PROOF. The barycenter of Q(Z,,) is

0 % k O
k0 ¢ c b
b(Zn):_ k C .0 K
p ¢
k ¢ --- c 0
0 b - i b g

where a = perR,_y, b = (n —3)perD,,_3, ¢ = perCh_y + (n —
4)perDy g,

k = perCpn_g + (n — 3)perDy_y, p = (n — 2){perC,i_o + (n —
3)perD,_,}.

Then

perb(Z,) = ;pcrb(Z n)nln)+(n-— 2) perb (Zn)(2]n)

:n—2p( ) SperC, _

perD,, _,.

Suppose that b(Z,) is a minimizing matrix. Then we have
perb(Z,) = perb(Z,)(2 | n) = perb(Z,,)(n | n)

by Lemma 2. Thus

Then
(n—3)%(perD,_3)? —(n — 2)perCr_o{perCpn_a+ (n —4)perD,_,} = 0.

Hence

(n —2)perCp—y {perCp_y+ (n — 4)per D, _5}

R S (e s M

=1
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Let
_ (n—=2)perCp_,
fln) = (n —3)perD, _,
14 (n—2)perCp_3 — (n — 3)perD,_, —1ta,

(n — 3)perD,,_,
perCy_o + (n —4)perD,, _,
g9(n) =
(n — 3)perD,, _,
perDp_o —perC,
(n —3)perD, _,
where «a, J are positive real numbers.
Compare o with 1—_% Since

=1

—1-5

o= (n —2)perCp_a —(n — 3)perDy,_
B (n—3)perD,_, ’
B perDy_y — perC,_

7 -
(7) 1-8 (n—4)perD,_3 +perC,_o

and perD, = perC, + perC,,_, perR,, = (n — 1)perCp,_;,
(Denominator of right hand of (6))—(Denominator of right hand of

(7))

(6)

=(n —3)perDp_y — {(n — 4)perD,_z + perCp_3}
>(n ~3)perDy_g — {(n —4)perDy_2 + perD,_;}
=0
and
(Numerator of right hand of (6))—(Numerator of right hand of (7))

=(n —2)perCh_3 — (n — 3)perDyp_—3 — perDy_5 + perCr_y

=(n—1)perCp_g — (n — 2)perD,_,

=perCp_; — (n — 2)perC, _3

=perR,_, + perR,_3 — perR,_5 — perChp _3

=perR,_3 — (perRy,_3 + perR, _4)

= —perR,_4

<0.
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Hence a < l—g—ﬂ- Since (1 + a)(1 — 8) = 1(a, §; positive) if and only
if a = Tg‘—é, (1+ a)(1 = B) # 1l,which is contradicts to (5). Therefore
perb(Z,)(2 | n) > perb(Z,)(n | n).

Thus b(Z,,) is not minimizing matrix on (Z,). That is , Z, is not
barycentric for n > 4.
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