Comm. Korean Math. Soc. 11 (1996), No. 3, pp. 855-865

WEAK CONVERGENCE OF PROCESSES IN A
GENERALIZED CURIE-WEISS MODEL AND ITS DUAL

SANG Ho LEE AND JONG W00 JEON

ABSTRACT. In this paper, we establish the weak convergences of pro-
cesses occurring in a generalized Curie-Weiss mode! and its dual.

1. Introduction

Let {X;") :J=1,2,--- ,n} be a triangular array of random variables
with the joint distribution given by

(1.1) d;t exp[—BHu(x1, -+ ,x0)] [] dP(2;),
j=1

where P is a probability measure on R! and d,, is a normalizing constant.
The model (1.1) is often considered in a study of ferromagnetic system

in statistical mechanics. There, an) is the magnetic spin at the i-th
site, (> 0) inverse temperature and H, Hamiltonian which represents
the energy of the system. When H,, takes the form H,(z;, 22, -+ ,z,) =
—(2_i; 7i)?/2n, the model(1.1) is usually called the Curie-Weiss model
and a number of results on the asymptotic distribution of the total mag-
netization S, = Y., Xi(") for this model have been established. See [3],
[4] and [7]. A generalized Curie-Weiss model considered in this paper is
the model (1.1) in which Hamiltonian H, takes the form

(1.2) H,(zy,22,- ,zn) = —n¥g (Z :c,-/n) ,

1=1
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where Wq is the cumulant generating function(c.z.f.) of some suitable
probability measure Q. Obviously the Curie-Weiss model is a special
case of the model (1.2) when @ is standard normal. We obtained some
limit theorems of this model (1.2). See [5] and [6].

The purpose of this paper is to establish weak convergences of the
processes based on the appropriate partial sums considered in model
(1.2) and its dual in which the role of P is interchanged with that of Q
in (1.1). In Section 2, we summarize the result of [5] as preliminaries.
The main results are stated and proved in Section 3.

2. Preliminaries

For a given probability measure @ with ®g(¢) = / exp(tr)Q(dr)

R
< oo, [t|<h, h>0,letLg be a class of probability measures P such
that for |t| <k, k >0

(2.1) Dp(t) = /I;exp(t;r)P(dm) < o
and

2.2 Po(z)dP(xr 00.
(2:2) | @airi) <

Let {X](-") 1) =1,2,--- ,n},n=1,2,--- be a triangular array with the
Jjoint distribution given by

(2.3)
dpn(a1,22,+ ) = 27 expln@o{(z1 + - + va)/n}] [[ dP(z;),
j=1

where P € Lg,¥q(t) =log®q(t), and 2, is a normalized constant,

(2.4) zn:/Rn[n\IlQ{(:vl +---+xn)/n}]HdP(x]).
J=1

Assume that Dg = (a,b) = {2]0 < Fg(z) < 1}, where Fg is the dis-
tribution function of @, and define Ggp(u) = yo(u) — ¥p(u) for all
u € Dgq, where v¢ is the large deviation rate of Q and ¥ p is the c.g.f.
of P.
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DEFINITION 2.1. A real number m(€ Dg) is said to be a global
minimum for Ggp if

GQp(m) < GQp(u) for all u € DQ.

DEFINITION 2.2. A global minimum m for Ggp is said to be of type
kif

(25)  Gor(m+u)—Gop(m) =

where ¢y = GV P is strictly positive.

Since P € Lq implies ) € Lp, interchanging the roles of P and Q in
the model (2.3) is possible and the dual model is defined as
(2.6)

dﬂn(xlax27”. ’xn):d;'lexp[n\llp{(:r1+' /n} H i)7

where d, is a normalizing constant.

For the dual model, we also assume that Dp = (¢,d) = {z|0 <
Fp(r) < 1} where Fp is the distribution function of P and G pg(u) =
vp(u) — Wg(u) for all u € Dp, as in the original model. The following
theorems reveal some relationships between two models.

THEOREM 2.3. Assume that Ggp has the unique global minimum of
type k at m and

(2.7) ténf Ggp(t) < min { lirtninf Goprl(t), lirtnizlf GQp(t)},

Then G pg has the unique global minimum of type k at m? = ¥/5(m)
and in this case G%)kQ(mD) = cok[¥'h(m)]~%*. Furthermore

(2.8) térgp Gpg(t) < min { hrtn_}ilf Gpol(t), l}inri,ltlllf GPQ(t))}.
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THEOREM 2.4. Let P and @ be probability measures satisfying the
uniform local limit theorem of Daniels [2]. Let {Xl("),Xé"), el Xﬁ,")}
and {XlD("), X:?("), RN X,?(")} be triangular arrays of random vari-
ables with joint distributions p, and u? given by (2.3) and (2.6) respec-
tively. Assume that m is the unique global minimum of type k for Ggp
and the condition (2.7) holds. Then

S, —nmP d N0, 1/mP +1/c)  if k=1
(2.9) LN

mPnl-1/2k exp{—cary?*/(2K)!} if k>2,

wherem? = ¥, (m),mP = Wh(m), cor = Gg;)(m) and S, = S0, X
and

(2‘10) SP _nm . { N(O, 1/mq + 1/6'2 k=1

)
n
mynl-1/2k exp{—ch,y**/(21)!} ifk > 2,

Where m = lII’Q(mD),ml = \I/'é(ml)),(‘;k = G(Izg)( ’TI,D) and S,];) - Z?:l

xPn),

3. Main Results

For model (2.3), define a process

_ (Sing — [nt]mP) + (nt - [nf])(X[(:¢)1+1 -~m?)

manl—l/Zk 0<t<l,

Wa(t)

where S[ny = Z{lﬂ X ,( ™) and [nt] denotes the largest integer not exceed-
ing nt. We also define, for the dual model (2.6),

(S[Qq — [ntlm) + (nt - [nt])(X[Izgl'il - m)

m]nl-—]/Zk Ostsl,

WP(t) =

where 52, = Y12 X7 Note that Wa(1) = (S, —nmP)/mPn!-1/2
and WP(1) = (SP — nm)/min?~1/2%. Thus W, (1) and WP(1) have
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the limiting distributions stated in Theorem 2.4. In this section, we first
prove weak convergence of the process {W,(¢),0 < t < 1} and, from this
result together with the relationships between two models, we establish
weak convergence of the process {W(¢),0 <t < 1} in the dual model.
For the rest of this section, we assume that the probability measures P
and @ satisfy the uniform local limit theorem of Daniel. [2]

3.1 Conditional weak convergence

Let {Zn;n > 1} be a sequence of iid random variables with com-
mon distribution ¢ and let f, be the probability density function of
S % . Z;/n. Then, to apply conditioning technique, we express the joint
distribution p, in (2.3) as follows:

d/""n(xlam% 7In)

n

=z 'exp {an(; J:i/n>} iliIldP(:c,-)
<[ Lo S wpiors] [Tapten

=1

Applying Daniels’ uniform local limit theorem for f,, with \Il’Q(tn) =
m +yn~! and Po(ta) = o%(t,), we have
(3.1)
z;ln‘l/zk/ [Hexp{zi(m+yn‘l/2k)}dP(zi)]
R

i=1

%/ 320 7 (tn) exp{=n3q(m + yn =1/ 2*)[1 + o(1)]dy

:zgllznk‘l/”/ [H exp{zi(m + yn-l/%) - WUp(m+ yn-l/2k)}dP(xi):|
R

1=1

x exp{—n{yo(m + yn—l/zk) —Up(m+ yn_]/”))}o‘l(tn)[l + o(1)]dy

><fR [Hew{zi(mwn*”“) —wp(m+yn~”“>}dP(z.->]

i=1

x exp{—n(Ggp(m +yn=1/2) = Gop(m))}o~1(ta)[1 + o(1)]dy

-k [ [illdMn,y(z,-)]hn(y)dy,
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where

dMy, y(z) =exp{z(m + yn~ 2 — Up(m + yn /%) }dP (r)

haly) = exp{=nGap(m -+ yn /%) — Gop(m)}o="(t1[1 + of1)
and K, =z,V2rn~(k-1)/2% exp{nGgp(m)}

Since fRn du(xry, 2, - ,x,) = 1 and fR dM, , = 1 for each y and i,
we have A, = fR y) dy. Thus h}(y) = K;7'7 ,.(y) is a probability
density function for each n. The representation (3.1) of du, therefore
shows that we can introduce a new random variable V,, with the prob-
ability density function hn(y) such that, given V, = y, the Xﬁln)’s are
independent and identically distributed random variables with the dis-
tribution dM, ,(r). Thus, weak convergence of W,(+), given V,, = y,
follows from the standard arguments on the proof of weak convergence
of the process based on normalized partial sums of iid random variables.

THEOREM 3.1. Let m be th( unique global minimum of type k for
Gqp. then, under M, ,. {W,(t), 0 >t >} is tight.

PROOF. We will show that for each ¢ > 0, there exist A > 1 and an
integer ng such that for n > ng,

i €
2 )\77’]—-1/2km’][) } S .

S, —im? 2

(3.2) Pr {max

i<n

Now, since

n-i+1/2k max D

i<n
:nl/lelIl'P(yn"l/zk +m) —m?|
:n,'l/Zk]\I//}')(m)yn_]/Zk 4 0(ﬂ—1/2k)|
=|¥p(m)y + o(1)],

iU (yn VY2 L m) o im

there exists n, such that for n > nq,

(3.3) r,n<aﬁ( iU L (yn ~1/2k +m)— smP < gm{)ylnl——l/’zk‘
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Next, note that, under M, ,, the mean and variance of Xi(") are ¥/,

(ny—1/2k +m) and T%, (ny~—1/2F 4 m), respectively. Thus, it follows pp.
69, [1] that

A
Pr{ max Si— iU (yn~ /2 4 m)' > gnl—lﬂkmf)}
A l1/2k,,D
SZPT{ Sn—n\I/'P(yn”]/zk—}-m){ > ( - s - \/§)
24/ U (yn=1/2% 4 m)

Sn — nU(yn= 1% L m)

)
>
ATy 7§ m)

/\nl—l/kaf)

2\/n\IJ’}’,(yn‘1/2k.|_m) —_

:2Pr{

By the central limit theorem, there exists ny such that if n > n,, then

(3.4) Pr{ r{lsar)lc

S —iWs(yn~ V2 4 m)

4

> ;nl—l/ka{)}
Ank=1)/2k /oD
S3Pr{|N(0,1)|Z - 5 i —\fz'}

(k=1)/2k /7D
SBPT{]N(O,1)| > An 575 ki } for A > 412

24 x 24
<3 x NI /K (mD)? x E|N(0,1)[*
. 48?2
_)\4n2(k—1)/k(m1D)2'

Let ¢ > 0 be given and choose A > max{3|y|, 48/mP\/c} and n,
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max{ni,nz}. Then, for all n > ng, we have

Pr{ max |S; — im®?| > /\77,1"1/2km1[)}
i<n

g —1/2k A 112k D
<Pr max S; —1¥p(yn +m)| > 3" m

+ Pr{ max 10 (yn 1 4 m) - z'm{)}
48?
SA4nz<k—n/k(mp) by (3.3) and (3.4)
482 (m{")%

< .
=X (mD)z * g2
€

The proof is completed.

THEOREM 3.2. Assume that m is the unique glcbal minimum of type
k for Ggp and the condition (2.7) holds. Then under Mpy. for0<s <
t <1,

(Wals), Wa(t) — Wa(s)) L
D
1 2, o 1)z s/my 0 )) ) _
{ N ((8 y, (T —s) /" %y), ( 0 (t—s)mD if k=1
(5(31_1/2ky, (t _ 3)1-—1/2ky) ifk>2

where 6(-) denotes degenerate distribution.

Proor. Since, for each 0 <t < 1,

, (n)
Wha(t) — Sng — [ntjm? Kipg —m” g
manl——l/Zk = man]—l/2k - ’

1t suffices to obtain the limiting distribution of

<5[m] — [nt]m®  (Spag — Spng) — ([nt] — [ns])mD) |

(3.5)

mPri-1/2k mDp1-1/2+
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Sing = [ntlm? _ [ns]' 712 S — [nsm?

= . we have
mPnl—-l/2k nl-1/2k m]D[ns]l—l/Zk !

Since

Sing — [ns]mP 4 N(s%y, s1/2/mP)y if k=1
m{Pnl=1/2k 8(s1-1/2ky) it k>2,

Since the component in (3.5) are independent, the theorem is proved.

From Theorem 3.2, the following conditional weak convergence can

be established.

THEOREM 3.3. Let m be the unique global minimum of type k for
Ggp and assume that the condition (2.7) holds. Then, under My 4,
Wa(t), 0 <t <1, converges weakly to Wy(-), where Wy(-) is a Gaussian
process with independent and stationary increments and with E(W,(t))
= t1/2 and Var(Wy(t)) = t/mP, if k = 1, and W,(-) is a process degen-
erate at t'~1/2ky ifk > 2.

3.2 Weak convergence

Recall that the joint distribution yj, in (2.3) was expressed in (3.1) in
terms of M, , and h}(y). Weak convergence of W,(-) therefore follows
from Theorem 2 of [8], if A} (y) converges to a probability density function
h*(y) for each y. That is to say, the limiting process W(:) will then be
determined as the h*-mixture of W(-) obtained in Theorem 3.3. In fact,
by (2.9) for each y, h%(y) — h*(y), as n — oo, where

. _ exp{—czkka/(zk)!}
(3.6) h*(y) = T exp{—caxu* /(2k)}du’

Thus we have the following result of weak convergence.

THEOREM 3.4. Assume that Ggp has the unique global minimum of
type k at m and condition (2.7) holds. Then the process Wy(t), 0 <
t < 1, converges weakly to a process W(t) whose finite dimensional
distribution is determined as follows: for 0 < s <t < 1,

(W(s), W(t) =W(s)) ~ N@©QY =(oy), ifk=1,
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and

u(z1,72)
Pr(W(s) <azy, W(t)— W(s) <zy) = / E*(y)dy, ifhk>2,

— 00

where 011 = s(m{ +¢;)/(mPey), 023 = (t—s)(mP +c3)/(mPey). 01y =
o21 = s/t — $)1/2 /¢y, w(zr, 2) = min{z, /s' V2K gy /(1 — )1 -1/2k)
and h* is a probability density function defined ir: (3.6).

3.3 Weak convergence in the dual model

If Gp has the unique global minimum of type = at m, then G pg also
has the unique global minimum of type k at m? := U's(m) by Theorem
2.1. Furthermore condition (2.7) implies condition (2.8). Therefore if
the probability measure P satisfies the uniform local limit theorem of
Daniels, the same argument in Sections 3.1 and 3.2 are available for the
dual model. Thus we have the following weak convergence of the process
{WP(t), 0<t <1},

THEOREM 3.5. Assume that Ggp has the unique global minimum of
type k at m and condition (2.7) holds. Then the process WP(t), 0 <
t < 1, converges weakly to a process WP(t) whose finite dimensional
distribution is determined as follows: for 0 < s <1 <1,

(WP(s), WP = WPs)) ~ N =(oy),  ifk=1,

and

u(zy,72)
Pr(WP(s) <z, WP(t)—WP(s) < 1y) :/ RP(y)dy, ifk > 2,

where 011 = s(my +c})/(mych), ogy = (t—=s)m+ch)/(mich), o1y =
oa1 = sVt — )12 /ey, oy = e[ Wh(m)IZ, u(ay, ) = min{z,/s'~1/2k,

sxp{—chy?*/(2k)1)
To/(t—g)1—1/2k ol = G(Ek) m®) and kP — xp{ CQkyr‘ /( _
2/( ) } 2k PQ( ) (y) fR exp{ucfzkyzk/(Qk)!}du
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