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THE KONTSEVICH CONJECTURE
ON MAPPING CLASS GROUPS

SUNGBOK HONG

ABSTRACT. M. Kontsevich posed a problem on mapping class groups of
3-manifold that is if M is a compact 3-manifold with nonempty bound-
ary, then BDiff (M rel 8M) has the homotopy type of a finite complex.
Here, Diff (M rel 8M) is the group of diffeomorphisms of M which re-
strict to the identity on M, and BDf (M rel 8M) is its classifying
space. In this paper we resolve the problem affirmatively in the case
when M is a Haken 3-manifold.

1. Introduction

A 3-manifold M is irreducible if each 2-sphere in M bounds a 3-cell
in M. The restriction to irreducible manifolds has its main reason in the
Poincaré conjecture.

By a surface, we will mean a compact, connected 2-manifold. Let M
be a 3-manifold and F a surface which is either properly embedded in
M or contained in OM. We say F is incompressible in M if none of the
following conditions is satisfied.

(1) F is a 2-sphere which bounds a homotopy 3-cell in M, or

(2) F is a 2-cell and either FF C OM or there is a homotopy 3-cell
X CMwith0X Cc FUOM, or

(3) there is a 2-cell D C M with DN F = 0D and with 8D not
contractible in F.
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A 3-manifold M is said to be sufficiently large if M contains a properly
embedded, 2-sided, incompressible surface. An irreducible 3-manifold M
is called Haken if it is sufficiently large.

A boundary pattern m for an n-manifold M is a finite set of compact,
connected (n — 1)-manifolds in @M, such that the intersection of any z of
them is either empty or consists of (n — z)-manifolds. Thus when n=3,
the components of the intersections of pairs of elernents of the boundary
pattern are arcs or circles, and if three elements meet, their intersection
consists of a finite collection of points at which three intersection arcs
meet. The symbol |m| will mean the set of points of M that lie in
some element of m. It is important in arguments {o distinguish between
elements of m, which are surfaces in 9M, and the points of M which lie
in these surfaces, and we will always be precise in this distinction. When
lm| =0M, m is said to be complete. Provided that M is compact, we
define the completion of m to be the complete bour.dary pattern m which
is the union of m and the collection of free sides. In particular, the set
of boundary components of M is the boundary pattern z

Maps which respect boundary pattern structures are called admissi-
ble. Precisely, a map f from (M,m) to (N,n) is called admissible when
m is the disjoint union

m = H { components of f~1(()}.

Gen

Suppose (X, z) is an admissibly imbedded codisnension-zero subman-
ifold of (M,m), which is admissibly imbedded in (M,m). The latter
assumption guarantees that X N M = |z|, and that an element of z
which does not meet any other element of z must be imbedded in the
manifold interior of an element of m. Let z'" denote the collection of
components of the frontier of X in M. To split M along X means to
construct the manifold with boundary pattern (E’T}?,ﬁ Uz"), where
the elements of m are the closures of the components of F — (X N F)
for F € m. The boundary pattern mUz" is called the proper boundary
pattern on M—X.

The group of admissible isotopy classes of admissible homemorphisms

from (M, m) to (M, m) is denoted by H(M,m). Suppose (h) € H(M,m).



The Kontsevich conjecture on mapping class groups 817

Since A (|m|) = |m|. h must carry each free side of (M, m) homeomor-
phically to a free side of (M, m). Therefore h is admissible for (M, m).
Thus when working with mapping class groups of manifolds Wlth bound-
ary pattern, the requirement that the boundary pattern be complete is
not at all restrictive. '
An i-faced disc is a 2-disc whose boundary pattern is complete and
has ¢ components. Observe that each element of m is incompressible
if and only if whenever D is an admissibly imb edded 1-faced disc in
(M,m), the boundary of D bounds a disc in Im| which is contained in
a single element of m. For most of Johannson's theory, a somewhat
stronger condition is ' needed. The boundary pattern m is called useful
when the boundary of every admissibly imbedded i- faced disc in (M,m)
with i < 3 bounds a disc D in M such that DN (UpemOF) is the cone

on 3D N (UpemOF'). Notice that § is a useful boundary pattern on M
if and only if OM is incompressible.

Assume that (M,m) has a fixed structure as an I-bundle or Seifert
fibered space, with projection map p: M — F. The following definition is
from 5.3 of [J]. Let G be a manifold. A map g:G — M is called vertical
if its image is a union of nonexceptional fibers. It is called horizontal if

¢~ Y(OM)=0G and g is transverse to the fibers. In general, an essential
surface in a fibered manifold is isotopic to one which is horizontal or
vertical. Proposition 5.6 of [J] is:

THEOREM 1.1. (Vertical-horizontal Theorem) Let (M,m) be an I-
bundle or Seifert fiber space, with fixed admissible fibration, and let
p:M — F be the fibre projection. Suppose (M,m) is not one of the
exceptional fibered manifolds (EF1)-(EF5). Let G be an essential surface
imbedded in (M. m) such that G C |m| and such that no component
of G is a 2- sphere or an i-faced disc, 1 < i < 3. Then G is admissibly
isotopic either to a vertical surface or to a horizontal surface. If in
addition B is any element of m which is not a lid of (M,m). such that
BN G is either horizontal or vertical, then the admissible isotopy of G
may be chosen constant on BN G.

In most cases, the fibering of a fibered manifold is unique up to isotopy.
The exceptions are determined in corollary 5.9 of [J]:

THEOREM 1.2. (Unique Fibering Theorem): Suppose each of (M, g)
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and (M, mg) is an I-bundle or Seifert fibered space with a fixed admis-

sible fibration, but neither is a solid torus with i =, nor one of the
exceptional fibered manifolds (EF3)-(EF5), (EIB) or (ESF). Then ev-
ery admissible homeomorphism h:(My,m,) — (Mj,m3) is admissibly
isotopic to a fiber-preserving homeomorphism. Moreover,

(1) the conclusion holds if M; is one of the exceptions (EIB) and h
and h~! map lids to lids, and

(2) if My is an I-bundle and h: M, — M is the identity on one lid,
then the isotopy may be chosen to be constant on this lid.

THEOREM 1.3. (Parallel Surfaces Theorem): Let M be an irreducible
3-manifold with complete and useful boundary pattern, and let (F, f)
and (G, g) be connected essential surfaces in (M,m), with F N oM = OF
and G N OM = 8G. Assume that (G, q) is admissibly homotopic into
(F, f) Then (G,g) is admissibly isotopic into (F, f) Moreover, if F
and G are disjoint, then (G, g) is admissibly parallel to (F, f)

One of the strongest properties of the characteristic submanifold is
proposition 13.1 of [J].

THEOREM 1.4. (Enclosing Theorem): Let (M,m) be a Haken 3-
manifold with useful boundary pattern, and let V be its characteristic
submanifold. Let (X, z) be an I-bundle or Seifert fiber space whose com-
plete boundary pattern is useful. Suppose that (X,z) Is not one of the
exceptional cases (EF1)-(EF5). Then every esseniial map f:(X,z) —
(M,m) is admissibly homotopic into V.

2. Almost geometric finiteness

We say that a group G is almost geometrically finite if it acts smoothly
and properly discontinuously on a contractible manifold W containing
a simplicial complex L, such that there is a G-equivariant deformation
retraction from W onto L, the restricted action of G on L is simplicial,
and L/G is finite. Note that any subgroup of finits index in an almost
geometrically finite group is also almost geometrically finite.
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PROPOSITION 2.1. Let 1 -V — G — @ — 1 be an exact sequence
of groups, such that V contains a finitely generated abelian group of
finite index and Q is almost geometrically finite. Then every torsion-
free subgroup of finite index in G is geometrically finite.

PROOF. Let H be such a group. Since V N H contains a finitely gen-
erated subgroup of finite index, it must contain a finitely generated free
abelian normal subgroup. Since V N H is also torsion-free, section 2 of
[K-L-R] shows that it is a Bieberbach group. The image R of H in
Q) has finite index, so is almost geometrically finite and acts properly
dicontinously on a contractible manifold W containing an invariant con-
tractible simplicial complex L such that L/R is finite. From [C-R], there
exists a Seifert-fibering p: & — W/R with compact fiber and fundamen-
tal group H. Moreover, the universal covering of 2 is W x R", where n
is the rank of the free abelian subgroup. The covering transformations
corresponding to elements of V N H take each R"-fiber in W >< R" to
itself, so H preserves L x R™. The quotient (L x R")/H is p~ YL/R),
and since L/R is a finite complex and the fiber of p is a compact flat
manifold, (L x R™)/H is a K(H,1) which is a finite complex.

Let (M, m) be a Haken manifold with a complete and useful boundary
pattern. We allow the possibility that M is empty. From proposition
9.1 and similar arguments used in section 3 and section 4 of [M], we can
deduce the following thereom. The detailed proofs of this theorem and
its corollary can be found in [H-M].

THEOREM 2.2. Let M be a Haken manifold and m a boundary pat-
tern on M whose completion is useful. Let G be a torsion-free subgroup

of H(M,m). Then G is geometrically finite.

We remark that by theorem 4.3.1 of [M], H(M,m) always contains a
geometrically finite subgroup of finite index. Therefore the theorem 2.2
has the content for every Haken manifold.

COROLLARY 2.3. Let M be a Haken 3-manifold with nonempty in-
compressible boundary. Then any torsion-free subgroup of finite index

in H(M rel M) is geometrically finite.

To see how this corollary applies to the Kontsevich conjecture, we
first recall the following theorem of A. Hatcher [H].
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THEOREM 2.4. If M is a Haken 3-manifold with nonempty boundary
then the components of Diff (M rel 3M) are contractible.

Thus 7, ( Diff (M rel 9M))=0 for ¢ > 1 and m(BDiff (M rel OM))
mo(Diff (M rel OM)), the mapping class group of Diff (M rel dM). It
also implies that BDiff (M rel OM) is a K(mo( Diff (M rel OM)).1)-
space. Applying corollary 2.3 shows that whenever 7q( Diff (M rel M)
does not contain torsion, BDiff (M rel 3M) is homotopy equivalent to a
finite complex.

In the next section, we show that mo( Diff (M rel M) is torsion free.

3. The Kontsevich Conjecture

LEMMA 3.1. Let M be a Haken manifold contzining an incompress-
ible surface G. Let f and g be two homeomorphisms of M which are
homotopic relative to M. Then f and g are isotopic relative to M. If
f and g agree on G, then they are isotopic relative to G U OM.

PROOF. Replacing f by ¢~ ' f, we may assume -hat f is orientation-
preserving and ¢ is the identity. By theorem 7.1 of [W], f is isotopic to
the identity relative to M. If f and g agree on G, then by Laudenbach
theorem (see for example, page 31 of [M]), we may assume that the
1sotopy is relative to G U M.

PROPOSITION 3.2. Let M be a Haken manifold with nonempty in-
compressible boundary. Assume that cach compon=nt of OM 1is a torus.
If ¢ is a map from M to itself such that ¢™ ~ 1, relative to M. then
g is isotopic relative to OM to a horeomorphism F with h™=1y.

PRrROOF. If M is a Seifert fiber space the proposition follows directly
from theorem 1 of [H-T)] and lemma 3.1. In the reinainder of the proof.
lemma 3.1 must be used in similar fashion to strengthen conclusions from
[H-T], but we will no longer mention these individually.

Assuming that M is not a Seifert fiber space and let = be the charac-
teristic submanifold of (M,0). Since T is unique up to isotopy, we may
assume that ¢(T)=13. Let F be a component of the frontier of ¥. Let F
be Ug*(F). a union of components of the frontier f &. By lemma 9(ii)

~ —~

of [H-T], there is a homeomorphism % isotopic to ¢, such that h(F)=F
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and A" is isotopic to 1lps relative to F U OM. Repeating this for all
components of the frontier of ¥, we may assume that g” is isotopic to
1as relative to the union of 8M and the frontier of £. Consider the
components of M cut along the frontier of £. Since the boundary of
M consists of tori, these components are either Seifert-fibered or simple,
and have only torus boundary components. On each of them, we can
use theorem 1 of [H-T] (for the Seifert-fibered ones) or the corollary
of [H-T] (for the simple ones) to change g by isotopy (relative to OM
and the frontier of ¥) to have order n.

Here is the main result of this section. This theorem together with
corollary 2.3 implies the Kontsevich Conjecture for Haken 3-manifolds.

THEOREM 3.3. Let M be a Haken 3-manifold such that M is non-
empty and incompressible. Then H(M rel OM) is torsionfree.

PROOF. We must prove that if f is a homeomorphism which is the
identity on the boundary and f™ ~ 1p for some n > 0 then f ~ 1lu,
where here and throughout the proof the symbol f =~ ¢ means that f
is isotopic to g (rather than just homotopic, as is more common in the
literature).

Let T be the union of the torus boundary components of M. Suppose
first that 7 = @M. By proposition 3.2, f ~ ¢ relative to OM with
g™ =1p. Since g is the identity on OM, this implies that g =1p. Now
suppose that 7T is not empty but T # 0M. Form N by gluing two copies
of M together along OM — T, and let F be the homeomorphism of N
defined by taking f on each copy of M. Since F"* = 1y relative to N,
proposition 3.2 applies as before to show that F =~ 1n. If we can show
that F ~ 1y relative to M — T, then f ~ 1 relative to M, and this
will complete the case when T # M.

Let H: N xI — N be an isotopy from F to 1. Let G be a component
of OM — T and let my be a basepoint in G. Consider the trace of H at
my, that is, the element o of m1(M,mg) represented by the restriction
of H to mg x I. Suppose that o does not lie in the subgroup m,(G).
Let 7 be any loop in G based at mg. Since F is the identity on G, the
composition H o (7 x 17): 8! x I — N shows that ara™' equals 7 in
71(M,my), that is, a centralizes m1(G,mg). Let S be the subgroup of
m1(M,my) generated by 7(G,mg) and a. Let N be the covering space
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of N corresponding to the subgroup S. By [S], there exists a compact
core C of N, so that m(C) — m(N) is an isomorphism. By [M-Y],
N is irreducible, so we may fill in any 2-sphere boundary components
with 3-balls in N in order to assume that C is irreducible. Let G be a
lift of G' to an imbedded incompressible surface in C. Since 7,(C) has
nontrivial center, it admits a Seifert fibering C — @, where Q is the
quotient orbifold. By theorem 1.1, G is 1sotopic to a surface which is
either vertical or horizontal, but since G is a closed surface not a torus,
this surface must be horizontal. Since C contains a closed horizontal
surface, C must be closed and therefore C = N. This implies that N is
closed, contradicting the fact that T is not empty. We conclude that the
trace of H lies in 71(G, my).

There is an isotopy of G that moves m, around a loop representing
a. Use this to obtain an isotopy, relative to N and preserving G, to
a homeomorphism F' such that F’ is isotopic to 1y, relative to N,
by an isotopy H' having trivial trace. By Laudenbach theorem, there
is an isotopy from F' to 1y, relative to N U G. Repeating for each
component G of M — T, we obtain the desired isotopy from F to 1x
relative to @M and hence from f to 1 relative to M. This completes
the case when M has a torus boundary component.

Now suppose that no component of M is a torus. Let G be a bound-
ary component, and choose an essential simple closed curve v in G. Let
G be a regular neighborhood of 4 in G. Let W be §! x §! x I. and
let G5 be a regular neighborhood of S' x {sq} x {0} in §' x S! x {0}
for some sy € S'. Form N by identifying G; with (/5 and let G be the
incompressible surface in N obtained from G, and G,. Since Gy is in-
compressible in M and W, N is Haken. Extend f t» a homeomorphism
F in N using the identity on W. The isotopy f* ~ 1 relative to OM
extends using the identity on W to an isotopy F™ ~ 1y relative to ON.
Since N has a torus boundary component, the previous case implies that
F =~ 1y relative to ON. By Laudenbach theorem, F ~ 1y relative to
G U AN, and therefore f ~ 1, relative to M.

ACKNOWLEDGEMENTS. Dedicated to my father.



The Kontsevich conjecture on mapping class groups 823

References

P. E. Conner and F. Raymond, Holomorphic Seifert Fibering, Lecture Notes
in Mathematics 299 (1972), 124-204.

A. Hatcher, Homeomorphisms of sufficiently large P?-irreducible 3-manif
olds, Topology 15 (1976), 343-347.

S. Hong and D. McCullough, Geometric finiteness in Haken 3-manifold
mapping class groups, in preparation.

W. Heil and J. Tollefson, On Nielsen’s theorem for 3-manifolds, Yokohama
Math. J. 35 (1987), 1-20.

K. Johannson, Homotopy Fquivalences of 3-manifolds with Boundary, Lec-
ture Notes in Mathematics, vol. 761, Springer-Verlag, 1979.

D. McCullough, Virtually geometrically finite mapping class groups of 3-
manifolds, J. Diff. Geom. (1991), 1-65.

Y. Kamishima, K.B. Lee and F. Raymond, The Seifert construction and
its application to infranidmanifolds, Quart. J. Math. 34 (1983), 433-452.
W. Meeks and S.-T. Yau, The classical Plateau problem and the topology
of three-dimensional manifolds, Topology 21 (1982), 409-442.

P. Scott, Compact submanifolds of 3-manifolds. J. London Math. Soc. 7
(1973), 246-250.

F. Waldhausen, On trreducible 3-manifolds which are sufficiently large,
Ann. of Math. 87 (1968), 56-88.

Department of Mathematics

Korea University
Seoul 136-701, Korea



