THE KONTSEVICH CONJECTURE ON MAPPING CLASS GROUPS

SUNGBOK HONG

ABSTRACT. M. Kontsevich posed a problem on mapping class groups of 3-manifold that is if M is a compact 3-manifold with nonempty boundary, then $BDiff(M \text{ rel } \partial M)$ has the homotopy type of a finite complex. Here, $Diff(M \text{ rel } \partial M)$ is the group of diffeomorphisms of M which restrict to the identity on ∂M , and $BDiff(M \text{ rel } \partial M)$ is its classifying space. In this paper we resolve the problem affirmatively in the case when M is a Haken 3-manifold.

1. Introduction

A 3-manifold M is irreducible if each 2-sphere in M bounds a 3-cell in M. The restriction to irreducible manifolds has its main reason in the Poincaré conjecture.

By a surface, we will mean a compact, connected 2-manifold. Let M be a 3-manifold and F a surface which is either properly embedded in M or contained in ∂M . We say F is incompressible in M if none of the following conditions is satisfied.

- (1) F is a 2-sphere which bounds a homotopy 3-cell in M, or
- (2) F is a 2-cell and either $F \subset \partial M$ or there is a homotopy 3-cell $X \subset M$ with $\partial X \subset F \cup \partial M$, or
- (3) there is a 2-cell $D \subset M$ with $D \cap F = \partial D$ and with ∂D not contractible in F.

Received April 11, 1996. Revised June 21, 1996.

¹⁹⁹¹ AMS Subject Classification: 57M99.

Key words and phrases: mapping class group, Haken manifold, boundary pattern. Partially supported by BSRI-94-1422, Ministry of Education and NON DIRECTED RESEARCH FUND. Korea Research Foundation.

A 3-manifold M is said to be sufficiently large if M contains a properly embedded, 2-sided, incompressible surface. An irreducible 3-manifold M is called Haken if it is sufficiently large.

A boundary pattern \underline{m} for an n-manifold M is a finite set of compact, connected (n-1)-manifolds in ∂M , such that the intersection of any i of them is either empty or consists of (n-i)-manifolds. Thus when n=3, the components of the intersections of pairs of elements of the boundary pattern are arcs or circles, and if three elements meet, their intersection consists of a finite collection of points at which three intersection arcs meet. The symbol $|\underline{m}|$ will mean the set of points of ∂M that lie in some element of \underline{m} . It is important in arguments to distinguish between elements of \underline{m} , which are surfaces in ∂M , and the points of M which lie in these surfaces, and we will always be precise in this distinction. When $|\underline{m}| = \partial M$, \underline{m} is said to be complete. Provided that ∂M is compact, we define the completion of \underline{m} to be the complete boundary pattern $\underline{\overline{m}}$ which is the union of \underline{m} and the collection of free sides. In particular, the set of boundary components of M is the boundary pattern $\underline{\overline{b}}$.

Maps which respect boundary pattern structures are called admissible. Precisely, a map f from (M, \underline{m}) to (N, \underline{n}) is called admissible when \underline{m} is the disjoint union

$$\underline{\underline{m}} = \coprod_{G \in \underline{\underline{n}}} \{ \text{ components of } f^{-1}(G) \}.$$

Suppose (X,\underline{x}) is an admissibly imbedded codimension-zero submanifold of (M,\underline{m}) , which is admissibly imbedded in (M,\underline{m}) . The latter assumption guarantees that $X\cap\partial M=|\underline{x}|$, and that an element of \underline{x} which does not meet any other element of \underline{x} must be imbedded in the manifold interior of an element of \underline{m} . Let \underline{x}'' denote the collection of components of the frontier of X in M. To $split\ M$ along X means to construct the manifold with boundary pattern $(\overline{M}-\overline{X},\underline{\widetilde{m}}\cup\underline{x}'')$, where the elements of $\underline{\widetilde{m}}$ are the closures of the components of $F-(X\cap F)$ for $F\in\underline{m}$. The boundary pattern $\underline{\widetilde{m}}\cup\underline{x}''$ is called the proper boundary pattern on $\overline{M-X}$.

The group of admissible isotopy classes of admissible homemorphisms from (M, \underline{m}) to (M, \underline{m}) is denoted by $\mathcal{H}(M, \underline{m})$. Suppose $\langle h \rangle \in \mathcal{H}(M, \underline{m})$.

Since $h^{-1}(|\underline{\underline{m}}|) = |\underline{\underline{m}}|$, h must carry each free side of $(M,\underline{\underline{m}})$ homeomorphically to a free side of $(M,\underline{\underline{m}})$. Therefore h is admissible for $(M,\underline{\underline{m}})$. Thus when working with mapping class groups of manifolds with boundary pattern, the requirement that the boundary pattern be complete is not at all restrictive.

An *i-faced disc* is a 2-disc whose boundary pattern is complete and has *i* components. Observe that each element of \underline{m} is incompressible if and only if whenever D is an admissibly imbedded 1-faced disc in (M,\underline{m}) , the boundary of D bounds a disc in $|\underline{m}|$ which is contained in a single element of \underline{m} . For most of Johannson's theory, a somewhat stronger condition is needed. The boundary pattern \underline{m} is called useful when the boundary of every admissibly imbedded i-faced disc in (M,\underline{m}) with $i \leq 3$ bounds a disc D in ∂M such that $D \cap (\bigcup_{F \in \underline{m}} \partial F)$ is the cone on $\partial D \cap (\bigcup_{F \in \underline{m}} \partial F)$. Notice that $\overline{\emptyset}$ is a useful boundary pattern on M if and only if $\overline{\partial M}$ is incompressible.

Assume that (M,\underline{m}) has a fixed structure as an *I*-bundle or Seifert fibered space, with projection map $p: M \to F$. The following definition is from 5.3 of [J]. Let G be a manifold. A map $g: G \to M$ is called *vertical* if its image is a union of nonexceptional fibers. It is called *horizontal* if $g^{-1}(\partial M) = \partial G$ and g is transverse to the fibers. In general, an essential surface in a fibered manifold is isotopic to one which is horizontal or vertical. Proposition 5.6 of [J] is:

THEOREM 1.1. (Vertical-horizontal Theorem) Let (M,\underline{m}) be an I-bundle or Seifert fiber space, with fixed admissible fibration, and let $p: M \to F$ be the fibre projection. Suppose (M,\underline{m}) is not one of the exceptional fibered manifolds (EF1)-(EF5). Let G be an essential surface imbedded in (M,\underline{m}) such that $\partial G \subset |\underline{m}|$ and such that no component of G is a 2-sphere or an i-faced disc, $1 \leq i \leq 3$. Then G is admissibly isotopic either to a vertical surface or to a horizontal surface. If in addition B is any element of \underline{m} which is not a lid of (M,\underline{m}) , such that $B \cap G$ is either horizontal or vertical, then the admissible isotopy of G may be chosen constant on $B \cap G$.

In most cases, the fibering of a fibered manifold is unique up to isotopy. The exceptions are determined in corollary 5.9 of $[\mathbf{J}]$:

THEOREM 1.2. (Unique Fibering Theorem): Suppose each of $(M_1, \underline{\underline{m_1}})$

and $(M_2, \underline{m_2})$ is an I-bundle or Seifert fibered space with a fixed admissible fibration, but neither is a solid torus with $\overline{\underline{m_i}} = \overline{\emptyset}$, nor one of the exceptional fibered manifolds (EF3)-(EF5), (EIB), or (ESF). Then every admissible homeomorphism $h: (M_1, \underline{m_1}) \to (M_2, \underline{m_2})$ is admissibly isotopic to a fiber-preserving homeomorphism. Moreover,

- (1) the conclusion holds if M_i is one of the exceptions (EIB) and h and h^{-1} map lids to lids, and
- (2) if M_1 is an I-bundle and $h: M_1 \to M_1$ is the identity on one lid, then the isotopy may be chosen to be constant on this lid.

THEOREM 1.3. (Parallel Surfaces Theorem): Let M be an irreducible 3-manifold with complete and useful boundary pattern, and let (F,\underline{f}) and (G,\underline{g}) be connected essential surfaces in (M,\underline{m}) , with $F\cap \partial M=\overline{\partial F}$ and $G\cap \partial M=\partial G$. Assume that (G,\underline{g}) is admissibly homotopic into (F,\underline{f}) . Then (G,\underline{g}) is admissibly isotopic into (F,\underline{f}) . Moreover, if F and G are disjoint, then (G,\underline{g}) is admissibly parallel to (F,\underline{f}) .

One of the strongest properties of the characteristic submanifold is proposition 13.1 of $[\mathbf{J}]$.

THEOREM 1.4. (Enclosing Theorem): Let (M,\underline{m}) be a Haken 3-manifold with useful boundary pattern, and let V be its characteristic submanifold. Let (X,\underline{x}) be an I-bundle or Seifert fiber space whose complete boundary pattern is useful. Suppose that (X,\underline{x}) is not one of the exceptional cases (EF1)-(EF5). Then every essential map $f:(X,\underline{x}) \to (M,\underline{m})$ is admissibly homotopic into V.

2. Almost geometric finiteness

We say that a group G is almost geometrically finite if it acts smoothly and properly discontinuously on a contractible manifold W containing a simplicial complex L, such that there is a G-equivariant deformation retraction from W onto L, the restricted action of G on L is simplicial, and L/G is finite. Note that any subgroup of finite index in an almost geometrically finite group is also almost geometrically finite.

PROPOSITION 2.1. Let $1 \to V \to G \to Q \to 1$ be an exact sequence of groups, such that V contains a finitely generated abelian group of finite index and Q is almost geometrically finite. Then every torsion-free subgroup of finite index in G is geometrically finite.

PROOF. Let H be such a group. Since $V \cap H$ contains a finitely generated subgroup of finite index, it must contain a finitely generated free abelian normal subgroup. Since $V \cap H$ is also torsion-free, section 2 of $[\mathbf{K}\text{-}\mathbf{L}\text{-}\mathbf{R}]$ shows that it is a Bieberbach group. The image R of H in Q has finite index, so is almost geometrically finite and acts properly dicontinously on a contractible manifold W containing an invariant contractible simplicial complex L such that L/R is finite. From $[\mathbf{C}\text{-}\mathbf{R}]$, there exists a Seifert-fibering $p: \Sigma \to W/R$ with compact fiber and fundamental group H. Moreover, the universal covering of Σ is $W \times \mathbb{R}^n$, where n is the rank of the free abelian subgroup. The covering transformations corresponding to elements of $V \cap H$ take each \mathbb{R}^n -fiber in $W \times \mathbb{R}^n$ to itself, so H preserves $L \times \mathbb{R}^n$. The quotient $(L \times \mathbb{R}^n)/H$ is $p^{-1}(L/R)$, and since L/R is a finite complex and the fiber of p is a compact flat manifold, $(L \times \mathbb{R}^n)/H$ is a K(H,1) which is a finite complex.

Let (M, \underline{m}) be a Haken manifold with a complete and useful boundary pattern. We allow the possibility that ∂M is empty. From proposition 2.1 and similar arguments used in section 3 and section 4 of [M], we can deduce the following thereom. The detailed proofs of this theorem and its corollary can be found in [H-M].

THEOREM 2.2. Let M be a Haken manifold and $\underline{\underline{m}}$ a boundary pattern on M whose completion is useful. Let G be a torsion-free subgroup of $\mathcal{H}(M,\underline{m})$. Then G is geometrically finite.

We remark that by theorem 4.3.1 of [M], $\mathcal{H}(M,\underline{\underline{m}})$ always contains a geometrically finite subgroup of finite index. Therefore the theorem 2.2 has the content for every Haken manifold.

COROLLARY 2.3. Let M be a Haken 3-manifold with nonempty incompressible boundary. Then any torsion-free subgroup of finite index in $\mathcal{H}(M \text{ rel } \partial M)$ is geometrically finite.

To see how this corollary applies to the Kontsevich conjecture, we first recall the following theorem of A. Hatcher [H].

THEOREM 2.4. If M is a Haken 3-manifold with nonempty boundary then the components of $Diff(M \text{ rel } \partial M)$ are contractible.

Thus $\pi_q(Diff(M \text{ rel } \partial M)) = 0$ for $q \geq 1$ and $\pi_1(BDiff(M \text{ rel } \partial M)) \cong \pi_0(Diff(M \text{ rel } \partial M))$, the mapping class group of $Diff(M \text{ rel } \partial M)$. It also implies that $BDiff(M \text{ rel } \partial M)$ is a $K(\pi_0(Diff(M \text{ rel } \partial M)), 1)$ -space. Applying corollary 2.3 shows that whenever $\pi_0(Diff(M \text{ rel } \partial M))$ does not contain torsion, $BDiff(M \text{ rel } \partial M)$ is homotopy equivalent to a finite complex.

In the next section, we show that $\pi_0(Diff(M \text{ rel } \partial M))$ is torsion free.

3. The Kontsevich Conjecture

LEMMA 3.1. Let M be a Haken manifold containing an incompressible surface G. Let f and g be two homeomorphisms of M which are homotopic relative to ∂M . Then f and g are isotopic relative to ∂M . If f and g agree on G, then they are isotopic relative to $G \cup \partial M$.

PROOF. Replacing f by $g^{-1}f$, we may assume that f is orientation-preserving and g is the identity. By theorem 7.1 of $[\mathbf{W}]$, f is isotopic to the identity relative to ∂M . If f and g agree on G, then by Laudenbach theorem (see for example, page 31 of $[\mathbf{M}]$), we may assume that the isotopy is relative to $G \cup \partial M$.

PROPOSITION 3.2. Let M be a Haken manifold with nonempty incompressible boundary. Assume that each component of ∂M is a torus. If g is a map from M to itself such that $g^n \simeq 1_M$ relative to ∂M , then g is isotopic relative to ∂M to a homeomorphism h with $h^n = 1_M$.

PROOF. If M is a Seifert fiber space the proposition follows directly from theorem 1 of $[\mathbf{H}\text{-}\mathbf{T}]$ and lemma 3.1. In the remainder of the proof, lemma 3.1 must be used in similar fashion to strengthen conclusions from $[\mathbf{H}\text{-}\mathbf{T}]$, but we will no longer mention these individually.

Assuming that M is not a Seifert fiber space and let Σ be the characteristic submanifold of $(M, \overline{\emptyset})$. Since Σ is unique up to isotopy, we may assume that $g(\Sigma) = \Sigma$. Let F be a component of the frontier of Σ . Let \widehat{F} be $\bigcup g^i(F)$, a union of components of the frontier of Σ . By lemma 9(ii) of $[\mathbf{H-T}]$, there is a homeomorphism h isotopic to g, such that $h(\widehat{F}) = \widehat{F}$

and h^n is isotopic to 1_M relative to $\widehat{F} \cup \partial M$. Repeating this for all components of the frontier of Σ , we may assume that g^n is isotopic to 1_M relative to the union of ∂M and the frontier of Σ . Consider the components of M cut along the frontier of Σ . Since the boundary of M consists of tori, these components are either Seifert-fibered or simple, and have only torus boundary components. On each of them, we can use theorem 1 of [H-T] (for the Seifert-fibered ones) or the corollary of [H-T] (for the simple ones) to change g by isotopy (relative to ∂M and the frontier of Σ) to have order n.

Here is the main result of this section. This theorem together with corollary 2.3 implies the Kontsevich Conjecture for Haken 3-manifolds.

THEOREM 3.3. Let M be a Haken 3-manifold such that ∂M is non-empty and incompressible. Then $\mathcal{H}(M \text{ rel } \partial M)$ is torsionfree.

PROOF. We must prove that if f is a homeomorphism which is the identity on the boundary and $f^n \simeq 1_M$ for some n > 0 then $f \simeq 1_M$, where here and throughout the proof the symbol $f \simeq g$ means that f is *isotopic* to g (rather than just homotopic, as is more common in the literature).

Let T be the union of the torus boundary components of M. Suppose first that $T=\partial M$. By proposition 3.2, $f\simeq g$ relative to ∂M with $g^n=1_M$. Since g is the identity on ∂M , this implies that $g=1_M$. Now suppose that T is not empty but $T\neq \partial M$. Form N by gluing two copies of M together along $\partial M-T$, and let F be the homeomorphism of N defined by taking f on each copy of M. Since $F^n\simeq 1_N$ relative to ∂N , proposition 3.2 applies as before to show that $F\simeq 1_N$. If we can show that $F\simeq 1_N$ relative to $\partial M-T$, then $f\simeq 1_M$ relative to ∂M , and this will complete the case when $T\neq \partial M$.

Let $H: N \times I \to N$ be an isotopy from F to 1_N . Let G be a component of $\partial M - T$ and let m_0 be a basepoint in G. Consider the trace of H at m_0 , that is, the element α of $\pi_1(M, m_0)$ represented by the restriction of H to $m_0 \times I$. Suppose that α does not lie in the subgroup $\pi_1(G)$. Let τ be any loop in G based at m_0 . Since F is the identity on G, the composition $H \circ (\tau \times 1_I): S^1 \times I \to N$ shows that $\alpha \tau \alpha^{-1}$ equals τ in $\pi_1(M, m_0)$, that is, α centralizes $\pi_1(G, m_0)$. Let S be the subgroup of $\pi_1(M, m_0)$ generated by $\pi_1(G, m_0)$ and α . Let \widetilde{N} be the covering space

of N corresponding to the subgroup S. By [S], there exists a compact core C of \widetilde{N} , so that $\pi_1(C) \to \pi_1(\widetilde{N})$ is an isomorphism. By [M-Y], \widetilde{N} is irreducible, so we may fill in any 2-sphere boundary components with 3-balls in \widetilde{N} in order to assume that C is irreducible. Let \widetilde{G} be a lift of G to an imbedded incompressible surface in C. Since $\pi_1(C)$ has nontrivial center, it admits a Seifert fibering $C \to Q$, where Q is the quotient orbifold. By theorem 1.1, \widetilde{G} is isotopic to a surface which is either vertical or horizontal, but since G is a closed surface not a torus, this surface must be horizontal. Since C contains a closed horizontal surface, C must be closed and therefore $C = \widetilde{N}$. This implies that N is closed, contradicting the fact that T is not empty. We conclude that the trace of H lies in $\pi_1(G, m_0)$.

There is an isotopy of G that moves m_0 around a loop representing α . Use this to obtain an isotopy, relative to ∂N and preserving G, to a homeomorphism F' such that F' is isotopic to 1_N , relative to ∂N , by an isotopy H' having trivial trace. By Laudenbach theorem, there is an isotopy from F' to 1_N , relative to $\partial N \cup G$. Repeating for each component G of $\partial M - T$, we obtain the desired isotopy from F to 1_N relative to ∂M and hence from f to 1_M relative to ∂M . This completes the case when M has a torus boundary component.

Now suppose that no component of ∂M is a torus. Let G be a boundary component, and choose an essential simple closed curve γ in G. Let G_1 be a regular neighborhood of γ in G. Let G_2 be a regular neighborhood of $G_1 \times \{s_0\} \times \{0\}$ in $G_2 \times \{s_0\} \times \{0\}$ for some $s_0 \in S^1$. Form $G_2 \times \{s_0\} \times \{s_0\} \times \{s_0\} \times \{s_0\}$ for some $s_0 \in S^1$. Form $G_2 \times \{s_0\} \times \{s_0\} \times \{s_0\}$ for some $g_0 \in S^1$. Form $g_0 \times \{s_0\} \times \{s_0\} \times \{s_0\} \times \{s_0\} \times \{s_0\}$ for some $g_0 \in S^1$. Form $g_0 \times \{s_0\} \times$

References

- [C-R] P. E. Conner and F. Raymond, Holomorphic Seifert Fibering, Lecture Notes in Mathematics 299 (1972), 124-204.
- [H] A. Hatcher, Homeomorphisms of sufficiently large P²-irreducible 3-manif olds, Topology 15 (1976), 343-347.
- [H-M] S. Hong and D. McCullough, Geometric finiteness in Haken 3-manifold mapping class groups, in preparation.
- [H-T] W. Heil and J. Tollefson, On Nielsen's theorem for 3-manifolds, Yokohama Math. J. 35 (1987), 1-20.
- [J] K. Johannson, Homotopy Equivalences of 3-manifolds with Boundary, Lecture Notes in Mathematics, vol. 761, Springer-Verlag, 1979.
- [M] D. McCullough, Virtually geometrically finite mapping class groups of 3manifolds, J. Diff. Geom. (1991), 1-65.
- [K-L-R] Y. Kamishima, K.B. Lee and F. Raymond, The Seifert construction and its application to infranilmanifolds, Quart. J. Math. 34 (1983), 433-452.
- [M-Y] W. Meeks and S.-T. Yau, The classical Plateau problem and the topology of three-dimensional manifolds, Topology 21 (1982), 409-442.
- [S] P. Scott, Compact submanifolds of 3-manifolds. J. London Math. Soc. 7 (1973), 246-250.
- [W] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88.

Department of Mathematics Korea University Seoul 136-701, Korea