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AN APPLICATION OF LEAST AREA
SURFACES TO 3-MANIFOLDS

MYOUNGHO MOON

ABSTRACT. We provide a new proof of the following fact using least area
surfaces: If the fundamental group of a P?-irreducible closed 3-manifold
M contains a finitely generated nontrivial normal subgroup of infinite
index, then M has a finite cover which is a closed surface bundle over
S, unless N is free.

Introduction

In [4] [5], Jaco and Rubinstein introduced P.L. area of immersed sur-
faces in 3-manifolds, and provided with the existence of P.L. least area
surfaces for various cases. They also pointed out that establishing the
existence of appropriate least area surfaces in P.L. cases is easier than
in smooth cases. Further they showed that most of the techniques used
in smooth cases like exchange and round off trick work for P.L. cases.
In this paper we use P.L. least area surfaces to give another proof of
Hempel and Jaco’s result ([3]) for P?-irreducible closed 3-manifolds (See
the Main Theorem). This paper consists of three sections. In the first
section we provide some of the basic facts in 3-manifold theory and group
theory. In the second section P.L. least area will be introduced and the
existence theorem of P.L. least area surface will be shown for a particular
case. The main theorem will be proved in the third section. The main
idea was suggested by P. Scott. He also has been a great help in filling
out the details of the proof of the Main Theorem.
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1. Preliminaries

we review some basic material for the main theorem. Recall that G
is indecomposable if G = G, * G implies that either G; =1 or G, = 1.
The following proposition is well known.

PROPOSITION 1.1. Suppose that a finitely generated subgroup U of

a group G contains a nontrivial normal subgroup N of G and U is of
infinite index in G. Then G is indecomposable.

We need the following lemma from the covering space theory. The
proof of it can be found in [1].

PROPOSITION 1.2. Let X be a locally connected, locally compact,
pathwise connected space. Suppose we have covering spaces ,

Xy S5 Xy —X
corresponding to the subgroups N < U < G = 71(X), and N is normal
inG. If| G:U | the index of U in G, is infinite, and A C Xn and
B C Xy are compact, then for all but a finite number ofg € G/N\U/N,
a(gA)N B = §.
Recall that a 3-manifold M is irreducible if every 2-sphere in M

bounds a 3-cell in M, and that M is P2-irreducible if M is irreducible
and no 2-sided projective plane is embedded in M

DEFINITION 1.3. A 2-manifold F in a 3-manifold M is incompressible

in M provided that whenever D is a 2-cell in M with DN S — 9D, then
0D bounds a 2-cell in F.

REMARK. If F is 2-sided in M or F C OM, then the loop theorem
and Dehn’s lemma imply that F is incompressible in M if and only if
the inclusion induced map i, : 7 (F) — 71(M) is a monomorphism (See

2]).

PROPOSITION 1.4,[8]. Let M be a compact irreducible 3-manifold.
Suppose that there is a finitely generated subgroup K of 71 (M) satisfying
the following short exact sequence:

15K —>m(M)—>Z-—1.
If K # 1 or Zy, then M is a bundle over S' with fiber F a compact
surface and m(F) = K.
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PROPOSITION 1.5,[9]. Let M be a 3-manifold and let U be a sub-
group of 1(M) such that

(1) U is finitely generated,
(2) U is indecomposable and is not isomorphic to Z.

Then there is a compact incompressible submanifold W of M such that
the image of m(W) in (M) contains a conjugate of U.

REMARK. In [9], the condition (1) was that U was finitely presented.
However, it can be replaced by the condition (1), considering P. Scott’s
result which says that every finitely generated 3-manifold group is finitely
presented(See [7]).

PROPOSITION 1.6, [3]. Let M be a compact, P*-irreducible 3-manifol
d. Let F be a compact, connected, incompressible 2-manifold in OM.
Then the following hold.

(1) If iy : m1(F) — m1(M) is an isomorphism, then there is a home-
omorphism h : F x I — M such that h(z,0) = z for all z € F.
(2) If i.(w1(F)) has index two in m(M), then there is a homeo-

morphism between M and a twisted I-bundle over a compact
2-manifold which takes F to the corresponding 0-sphere bundle.

four with 3 sides three with 4 sides

FIGURE

2. P.L. Least Area Surfaces

Let M be a 3-manifold with a fixed triangulation 7 and a Riemannian
metric on the 2-skeleton 7(?). For example, put the hyperbolic metric on
each 2-simplex so that each 2-simplex can be considered an ideal triangle
in H?. For an immersed surface F in M transverse to the triangulation 7,
F meets the 1-skeleton 7(!) transversely in a finite number of points(with
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multiplicity), and F N 7®) is a finite union of arcs with a finite total
length L. We define the P.L. area of F by (w,1) with the dictionary
order. w is called the weight of F. A properly embedded surface F
in a 3-manifold M is defined to be a normal surface with respect to
a triangulation 7 of M if F meets each 3-simplex of 7 in a pairwise
disjoint collection of disk types of 7 shown in the Figure.

Given a normal surface f : F — M. the normal homotopy class A/( f)
is defined to be the set of all normal surfaces g : F — M which are
normally homotopic to f. It can be shown that if M is P2-irreducible
and a closed normal surface f:F Mis mr)-injective with T (F) £ 0,
then the normal homotopy class of f contains a normal map of least P.L.
area. Moreover, if M is P?-irreducible and a P.L. least area surface F is
mi-injective with 7((F) # 0, then F is normal. Her.ce to find a P.L. least
area surface, we only need to look into normal surfaces.

LEMMA 2.1. Let M be a 3-manifold and Y be a compact subset of
M. Then there are only a finite number of norma’ homotopy classes of
surfaces of a given weight which meet Y.

PROOF. Let N be a given weight. Since Y is compact, any normal
surface of weight N which meet Y is contained ia a finjte number of
3-simplices in M. Let 0y, --- , g, be the I-simplices in the union of those
3-simplices. Assign a nonnegative integer n; to each o, so that > n;=N.
Note that there are only a finite number of ways o’ doing this. Next, in
each 2-simplex, choose points on l-simplices and join by a path. Each
normal surface is obtained by doing the previous two steps up to normal
homotopy. Since there are only a finite number of ways of doing each
step, there are only a finite number of normal homotopy classes of a
given weight.

THEOREM 2.2. Let M be a P?-irreducible closed 3-manifold with
(M) = G, and let My be a covering space of M with T (My) = N,
where N is a nontrivial normal subgroup of G. If My contains a closed
surface F' representing a nontrivial element in Hy(Mpy; Zy), then there is
a least possible P.L. area surface L among the closed surfaces representing
nontrivial elements in Hy(My: Zy).



An application of least area surfaces to 3-manifolds 801

PROOF. Let p: My +— M be the regular covering map and Q be the
covering transformation. Since M is compact, there exists a compact
fundamental region Y in My and any surface F in My can be translated
by an element of @ so as to meet Y. By Lemma 2.1, there are only a finite
number of normal homotopy classes of surfaces of given weight which
meet Y, as Y is compact. Hence there is a least area surface L among
the closed surfaces representing nontrivial elements in Hy(Mpy;Z,).

3. Proof of the Main Theorem

First, we state the main theorem.

MAIN THEOREM. Let M be a closed, P*-irreducible 3-manifold sat-
isfying the following exact sequence:

1o N-o-mM)LH Q-1

where N is a finitely generated normal subgroup of =;(M) with infinite
quotient group Q. If N is not free, then the following are true:

(1) N is isomorphic to the fundamental group of a closed surface,

(2) M is either a fiber bundle with fiber F a closed surface, or the
union of two twisted I-bundles over a closed 2-manifold F' which
meet in the corresponding (-sphere bundles.

(3) N is a subgroup of finite index of m,(F).

PRroOF. Since N is not free, N has an indecomposable free factor A
which is not isomorphic to Z. Consider the cover p : M — M with
(M) = N. Since |m (M) : N| = oo, M is an open manifold. By
Proposition 1.5, there is a compact connected submanifold W of M such
that each component of 9W is incompressible in M and m1 (W) contains
A. Since M is P%irreducible, no component of W is S? or P2 If
OW =0, then W = M, so M is compact. This is a contradiction to the
fact that M is an open manifold. Hence 8W # §. Let S be a component
of OW. If [S] = 0 in H,(M,Z;), S bounds a compact submanifold
V of M. If m(8) = m(V), then by Proposition 1.6, V 2 § x I, so
OV has two components, which is a contradiction. Thus 71(S) C 7(V).
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Since S is 2-sided and the only boundary of V', S senarates M. There are
infinitely many disjoint copies of V in M, as @ is an infinite group acting
properly discontinuously on M. These copies give rise to a decomposition
of m;(M) amalgamated along their boundaries. Since 7,(.5) ¢ m(V),
71(M) is not finitely generated. This is a contradistion to the fact that
N is finitely generated. Thus [S] # 0 in Hy(M,Zq1, so Hy(M,Zy) # 0.

Now consider the set of all 2-sided closed surfaces § C M such that
[S] # 0 in Hy(M,Z;). Theorem 2.2 guarantees the existence of least
area surfaces among all such surfaces. Take L of least area among all
such surfaces. We will prove that L is Q-equivariant. First, L separates
M. In fact, if L does not separate M, then there i3 a closed curve C' in
M intersecting L in 1 point transversally. Choose ¢ € @ such that g(LU
C)N(LUC) =0. Then LU gL does not separate .\/. By repeating this
argument, for each integer n, we can find n pairwise disjoint translates
L,,...,L, of L whose union does not separate M. Thus we can find in
M a graph T of euler characteristic 1 — n dual to JL, and a retraction
p: M — T. Then m((T) is free of rank n. We get a contradiction
if n i1s greater than the cardinality of some finite set of generators for
m1(M). Now suppose L intersects some translate 3L and gL # L. We
may assume that gL intersects L transversally. gL N L separates L and
gL into By U By and C; U Cy, respectively, as L separates M. Note that
B, By, C1, Cy need not be connected. Take the least area one among
B,,B;,C;,C,. Suppose it is B;. Consider (gL — C3) U By = C; U B,
and (gL — Cy)U B; = C,U By. Each of these two surfaces is of a disjoint
union of embedded 2-sided closed surfaces in M and is of area less than
the area of gL, after rounding corners. Hence each surface represents 0

in Hy(M,Zy). Now [gL] = [C3] — [B] and [¢L] = [C1] — [B,]. Thus
0=1[gL] = [gL] = [Co] = [B1] = [C1] + [Bi].

It follows that [C;] = [C;]. Since (9L — C,)U B, = C; U By, [¢gL] =
[C2] +[C1] = 2[C)]. Hence [gL] = 0 in Hy(M,Z,). This is impossible as
[L] # 0in Hy(M,Z,). Therefore, if L intersects sorae translate ¢L. then
gL = L. In other words, L is Q-equivariant.

By the main Theorem in [6], M has a P2-irreducible compact core
W. Since both M and W are aspherical, i : W -— M is a homotopy
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equivalence. Note that all but a finite number of ¢ L miss wW. If gLﬂW =
@, then gL is homotopic into W. Hence gL is homologous into W, and
so there is a compact submanifold W; of M such that AW, is the union
of gL and some surfaces in W. Note that OW; # gL, as [L] # 0 in
HZ(M Z3). Hence there is a path in Wi from L into W. This path
must meet a component § of dW, so SN W; #£ §. Also, SN AW, = 0,
as 3W1 = gL U (some surfaces in W). Both Wl and S are compact, so
SN W is compact. Since SN AW, =0, SN W is open in S. It follows
that SNW, = S, as S is connected. Hence S C W,. This implies that S
is homologous to gL, as S UgL bounds a submanifold of Wi. Therefore,
gL is homologous to a component of OW if gL N W = §. It follows that
the set of all gL’s forms only a finite number of homology classes, as W is
compact. Since @ is an infinite group, we can find 7 € @ such that 7L #
L but [rL] = [L]. It follows that 7L and L bound a compact submanifold
Y of M. There are infinitely many disjoint copies of Y, so there are
infinitely many separating 2-sided closed surfaces. These surfaces give
rise to the decomposition of 7{(M) amalgamated along them. This is
impossible unless 71(Y) = m(L), as ﬂ'l(M) is finitely generated. Hence,
71(Y) = m1(L). By Proposition 1.6, Y = LxI and Y = LUTL. Clearly,
UxT*Y is an open connected subset of M. Also, it is closed in M. In fact,
consider the cover a : M — M/(r). Then, a(Usr*Y) = Y /L ~ 7L,
which is compact, so closed. Since o™ (Y /L ~ rL) = Uxr*Y, Uer*Y is
closed. It follows that M = Ux7*Y, as M is connected. If 7 is of finite
order, then M must be compact, which is a contracdiction. Thus 7 is of
infinite order. Therefore M = L x R, so Hg(]\;f, Z) = Zj, which implies
that [gL] = [L] for any ¢ € Q.

Now since L is Q-equivariant, L finitely covers a closed surface F =
L /stabilizer of L. Pick o so that L and ¢ L bound a compact submanifold
X and the interior of X does not intersect any translate of L. Then
M = UpegnX and X = L x I, so M = L xI. It follows that N = 7(L),
and

M = X/Q = (X /stabilizer of X)/(L ~ oL).

Case 1, in which vL = L for all v € stabilizer of X.

(X/stabilizer of X) X F x1.
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Hence M = F x I /(F x 0 ~ F x 1), which is a bundle over S' with fiber
F. Furthermore, N is of finite index in 7,(F), as .V = T (L).
Case 2, in which there is a covering transformation ~ such that vX =

X and vL # L. Tt follows that L = oL and v(¢L) = L. Thus,
X/(stabilizer of X)=FxI,

where F'x I denotes a twisted I-bundle over F. Let Z be X/stabilizer of X.
Then
M=2Z / free involution on Fj.

where Fj is the boundary of FxI. Note that we inay regard Z as the
union of a collared neighborhood ¥ of 8Z and (Y \ ©). (Y \ ) is home-
omorphic to FxI, and

(E/frec involution on Fy) = Fx1.

Furthermore the two pieces meet in F. Since N = = (L), N is of finite
index in 7 (F). This completes the proof.
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