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ON REAL HYPERSURFACES OF A COMPLEX
SPACE FORM IN TERMS OF THE RICCI TENSOR

SEONG-BAEK LEE, SEUNG-GOOK HAN,
NAM-GIL KIM AND SEONG SO0 AHN

ABSTRACT. The purpose of this paper is to study a real hypersurface of
M, (c) where structure vector ¢ is principal and satisfying V¢S = (VS)¢{
(section 2 ) and also satisfying V¢S = a(S¢ — ¢#5) (section 3) where a
15 constant.

0. Introduction

A complex n-dimensional Kahlerian manifold of constant holomorphic
sectional curvature c is called a complex space form, which is denote by
M,(c). A complete and simply connected complex space form is a com-
plex projective space P,C, a complex Euclidean space E,C or a complex
hyperbolic space H,C, according as ¢ > 0, ¢ = 0 or ¢ < 0. Let M be
a real hypersurface of M,(c), ¢ # 0. Then M has an almost contact
metric structure (¢, £, 7, ¢) induced from the Kahlerian metric and com-
plex structure J of M,(c). We denote by V, A, and S, the Levi-Civita
connection with respect to g, the shape operator, and the Ricci tensor of
type (1,1) on M respectively. R. Takagi [13] classified homogeneous real
hypersurfaces of P,,C as six model spaces of type Ay, A5, B, C, D, and
E. T.E. Cecil and P.J. Ryan [2] extensively investigated real hypersur-
faces of a complex projective space P,C on which £ = —JN is principal
curvature vector, where N is a local unit normal vector field. By making
use of this notion and R. Takagi’s classification, M. Kimura [8] proved
the following.
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THEOREM A. Let M be a connected real hypersurface of P,C. Then
M has constant principal curvatures and € is principal if and only if M
is locally congruent to one of the followings;

(A1) a geodesic hypersphere (that is, a tube of radius r over a hyper-
plane P,,_C, where 0 < r < )

(Az2) a tube of radius r over a totally geodesic PrC(1 <k <n-—2),
where 0 < r < 7

(B) a tube of radius r over a complex quadric Q,_,, where 0 < r < o

(C) a tube of radius r over P;C x Pn_;_1C, where 0 < r < I and
n(> 5) is odd,

(D) a tube of radius r over a complex Grassmann G25(C), where
O<r<Zandn=29,

(E) atube of radius r over a Hermitian symmetric space SO( 10)/U(5),
where 0 < r < T and n = 15.

We note that the number of distinct principal curvatures of the above
homogeneous real hypersurface is 2,3,5 and that the structure vector
field ¢ is a principal curvature vector with principal curvature o = 2cot2r
(for more details, see [14]).

On the other hand, real hypersurfaces of a complex hyperbolic space
H,C have also been investigated by J. Bernt [1], S. Montiel [10] and
A. Romero [11] and so on. J. Bernt [1] classified real hypersurfaces
with constant principal curvatures of H,,C' under the condition that € is
principal curvature vector. Namely he proved the following.

THEOREM B. Let M be a connected real hypersurface of H,,C. Then
M has constant principal curvatures and ¢ is principal curvature vector
if and only if M is locally congruent to one of the followings;

(Ao) a horosphere in H,C,
(A1) a tube over a complex hyperbolic hyperplane P,_,C,
(A2) a tube over a totally geodesic PrC{1 < k <n - 2),

(B) a tube over a totally real hyperbolic space H, .

The principal curvatures and their multiplicities of the above hyper-
surfaces are also given in [1]. U-H. Ki [4] proved

THEOREM C. There does not exist a real hypersurface with the par-
allel Ricci tensor of complex space form Mp(c),c # 0,n > 3.
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From the above Theorem C, many authors investigated a real hyper-
surfaces of M, (c) under weaker conditions than the parallel Ricci tensor.
Y.J. Suh [12] determined a real hypersurface of M, (c) whose structure
vector ¢ is principal and satisfying g((VxS)Y,Z) = 0, where X,Y,Z
are vector fields which are orthogonal to €. S. Maeda [9] classified a real
hypersurface of P,C whose structure vector £ is principal and satisfying
VS = 0. Recently, in [3] J.T. Cho and U-H. Ki investigated a real hy-
persurface of P,,C on which structure vector £ is principal and the Ricci
tensor is parallel with respect to a canonical connection. Also, in [5] it
was proved that there does not exist a real hypersurface with harmonic
Weyl tensor of complex space form, ¢ # 0,n > 3.

In these circumstances, in the present paper, we investigate a real
hypersurface of M,,(c) whose structure vector ¢ is principal and satisfying
VeSS = (VS)E (section 2) and in section 3, we study a real hypersurface
of Mnp(c) whose structure vector ¢ is principal and satisfying V¢S =
a(S¢ — ¢S) where a is constant. All manifolds in this paper are assumed
to be connected and of class C'°.

The author would like to express his thanks to Professor U-H. Ki
and Dr. J.T. Cho for their valuable suggestions and advices during the
preparation of this paper.

1. Preliminaries

Let M be an orientable real hypersurface of M,(c) and N be a unit

normal vector field on M. By V we denote the Levi-Civita connection in
Mp(c). Then the Gauss and Weingarten formulas are given respectively
by

VxY =VxY 4+ g(AX,Y)N, VxN = —AX
for any vector fields X and Y on M, where g denotes the Riemannian
metric of M induced from Mp,(c). An eigenvector(resp. eigenvalue) of the

shape operator A is called a principal curvature vector(resp. principal
curvature). For any vector field X tangent to M, we put

(1.1) JX = ¢X +n(X)N, JN = ¢
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Then we may see that the structure (¢, £, 7, g) is an almost contact metric
structure on M, that is, we have

19) &°X = -X +n(X)E, n(€) =1,

' 9(¢X,0Y) = g(X.Y) — n(X)m(}").
From (1.2), we get
(1.3) P =0, nod=0, nX)=g(X,§).

From the VJ = 0 and (1.1), making use of Gauss and Weingarten for-
mulas, we have

(1.4) (Vxo)Y =n(Y)AX — g(AX.Y )¢

(1.5) Vxt = gAX.

Since the ambient space is of constant holomorphic sectional curvature
¢, we have the following equations of Gauss and Codazzi :

R(X.Y)Z ———g{g(Y, 2)X — g(X,2)Y
(1.6) +9(8Y, 2)6X — g(¢X,Z)oY — 2¢(6X.Y )9Z}

+ g(AY, Z)AX — g(AX, Z)AY,
(LT) (VXA — (VyA)X = Z{n(X)s¥ —n(Y)eX — 2(6X.Y)E}
Using (1.2), (1.3), (1.5) and (1.6), we get
(1.8) SX = %{(271 +1)X - 3p(X)E) + hAX — A2X,
and further

(VxS = —%{g((j)AX, Y)E + n(Y)0AX} + dh(X)AY
Fh(VxA)Y — A(Vx A)Y — (Vx A)AY,

(1.9)
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where h = traceA and d denotes the exterior derivative.

Now we assume that the structure vector £ is principal with corre-
sponding principal curvature «, i.e., A6 = a€. Then it is seen in 7] and
(8] that « is constant. Differentiating A¢ = o and using (1.5), we obtain

(VxA) = apAX — ApAX.
This equation and the equation (1.7) of Codazzi give rise to
(1.10) 2464 = §¢+a(A¢+ 3A).
Comparing (1.10) with the above equation, we have

c a

(1.11) (VxA¥ = _Z¢X - E(Aqﬁ —¢A)X.
By (1.7) and (1.11) we get
(1.12) (VeA)X = —%(,w — $A)X.
which implies
(1.13) dh(&) = 0.

If X is a principal vector with corresponding principal curvature A, then
(1.10) gives us to

(1.14) (2) — a)AdX = (% Fa)XY.

2. Real hypersurfaces satisfying V.S = (VS)¢

In this section, we prove

THEOREM 2.1. There does not exist a real hypersurface of M,(c),
¢ # 0 which satisfies A = af and V¢S = (VS)E,
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PROOF. Let M be a real hypersurface of M,,(¢c), ¢ # 0. Assume that
A{ = af. Then from (1.9)and (1.13) we have

(VeS)Y — (VyS)E

EfczﬁAY — adh(Y)E + (hI — A){(VeA)Y — (Vy A)E)

— (VeA)AY + a(Vy A)L.

(2.1) -

The equation (2.1) and the hypothesis, together with (1.7),(1.11) and
(1.12), yield

3¢ 44V — adh(Y)E + S(hI - A)gY
(2.2) 4 . 4
+ §(A¢ — 9A)AY + a(apAY — AgAY) = 0.

If we multiply (2.2) by ¢ and use (1.3), We see that adh(Y ) = 0 for any
vector field Y on M. Thus from (1.10) and (2.2), we have

(23)  3(c+a®)pAY — (¢ + a?)ApY — 2a8A%Y 4 ¢(h — =)oY = 0.
( 2

Let Y be any principal vector orthogonal to £ and put AY = \Y. Then
we see that 2\ # a. In fact, suppose that there exists a point p of M
such that 2X(p) # a. Then it follows from (1.14) that ¢ + a? = 0, which
together with (2.3) yields

(2.4) a’h(p) = 0.

If @ =0, then ¢ = 0 and this contradicts to ¢ # 0. Therefore o # 0 and
h(p) = 0. Since dh(X) = 0 for any vector field X on M, then h = o on
M. Because A = ¥, we have h = 2(n — 1)% + a = na and hence this
also contradicts.

Then (1.14) gives

_av\«i—
K=oy C

£
-2

AQY = udY, where
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Thus from (2.3), we obtain
(2.5) 207% — 3(c + a?)A + (c + o)y — c(h — %) =0.
If we substitute @Y instead of Y into (2.3), we also have
(2.6) 2ap? = 3(c+ o) + (c + a®)A — c(h — g) =0.
From (2.5) and (2.6), we get
(2.7) a(A? —p?) = 2(c+a®)(A—p) =0.

Now suppose there exists a point p € M such that A(p) = u(p). Then
(2.5) gives

(2.8) 20X*(p) —2(a” + M) — e(h(p) — 5) = 0.
On the other hand, (1.14) gives

(2.9) X(p) - aX(p) - =0,

The equations (2.8) and (2.9) yield
(2.10) h(p) = a — 2A(p).

Let e; = £, €3, ..., e2,—1 be principal vectors at p and put Ae; = Ai(p)e;,
M(p) =a,1=1,2,...,2n— 1. Then h(p) = a+ Y Xi(p). Since it follows

1=2
from (2.10) that h(p) = o — 2X;(p) for ¢ > 2, then we see \;(p) = 0 for
¢ > 2, that is, A(p) = 0 in (2.10).
Thus (2.9) gives rise to ¢ = 0 and this contradicts. Since A # u on
M, from (2.7) we get
(2.11) oA+ p) =2(a® +¢),
which shows that o # 0 on M. Moreover from (1.14) and (2.11) we have

(2.12) Ap =a?+ ZC.
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Hence we see from (2.11) and (2.12) that A and y are two distinet solu-
tions of ,
2 S
ﬁ.a_)t+(a2+_c):0

6% 4
and a is not a solution of it. This implies that the-e exist three distinct
constant curvatures o, A and p.

Also, from (2.5) and (2.6) we obtain

2 —

(2.13) elh —2a) = a(A? + p?) — (@ + ¢)( + p).

From (2.13), taking account of (2.11) and (2.12), we obtain h = 30&2

2 -
But, from (2.11) and (2.12), we also see that h = a + 2(n — 1)r_tagf,
Therefore we have

2n -4
—— _C’
2n -3

(2.14) a? =

Since o # 0, then n # 2. Therefore (2.14) shows that ¢ < 0. But
according to J.Bernt’s work [1], we see that Ay = 1, and from (2.12) that
al=1- gc, which together with (2.14) yield ¢ > 0. That is impossible.
At last we have proved Theoreml. (Q.E.D)

3. Real hypersurfaces satisfying VS = a($¢ — ¢5)

In the present section, we determine real hypersurfaces of M, (c), ¢ #
0, which satisfy A = af and V¢S = a(S¢ — ¢S) (a : constant).
Assume that A{ = a€. Then from (1.9) and (1.12) we get

(3.1) (VeS)Y = —2h(Ad — gAY + S(A24 - AV)Y,
2

N e

for any vector field ¥ on M. On the other hand, from (1.8), we get
(3.2) (5S¢ — ¢S)Y = h(A¢ — ¢A)Y — (A% - AM)Y.

Therefore from (3.1) and (3.2), taking account of Theorem 3.1 in [6], we
have
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THEOREM 3.1. Let M be a real hypersurface of P,(c), n > 3. Suppose
that M satisfies A = af and V¢S = a(S¢ — 6S) (a # — %, constant).
If a # 0 and the multiplicities of principal curvatures except « are not
equal to 1, then M is locally congruent to a tube of radius r over one of

the following Kahlerian submanifolds:
(A1) a hyperplane P,_,C, where 0 < r < 5 andr # I,
(A3) a totally geodesic PrC(1 < k < n — 2), where 0 < r < % and
P4
(B) a complex quadric Q,_;, where 0 < r < 2, cot?2r =n —2 and

n # 3,

(C) P,C x Pg;_lc, where 0 < r < Z, cot?2r = n—]——i and n(> 5) is

odd,
(D) a complex Grassmann G 5(C), where 0 <. v < I, cot?2r = 2
andn =9,

(E) a Hermitian symmetric space SO(10)/U(5), where 0 < r < I,
cot?2r = -g- and n = 15.

THEOREM 3.2. Let M be a real hypersurface of H,,C, n > 3. Suppose
that M satisfies Af = af and V¢S = a(S¢ — ¢5) (a # —2, constant).

2 r
If a # 0. then M is locally congruent to one of the types (Ap),(A,) or

(A2) in Theorem B.
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