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ON GENERIC SUBMANIFOLDS OF
A COMPLEX PROJECTIVE SPACE

SEONG-BAEK LEE, SEUNG-GOOK HAN,
NAM-GIL KIM AND SEONG SO0 AHN

ABSTRACT. The purpose of this paper is to compute the covariant de-
rivative of a shape operator of a generic submanifold of a complex space
form without using the Green-Stoke’s theorem. In particular, we clas-
sify complete generic submanifolds of a complex number space C™ with
parallel mean curvature vector satisfying a certain condition.

Introduction

One of typical natural submanifolds of a Kaehler manifold is the so-
called generic submanifolds that are defined as follows : Let M be a
submanifold of a Kaehler manifold M with complex structure J. If each
normal space is mapped into the tangent space under the action of J, M
is called a generic submanifold of M. Real hypersurfaces of Riemannian
manifolds are the most typical example of generic submanifolds. Com-
pact submanifolds of Kaehler manifold have been studied by applying
the Green-Stoke’s theorem to compute the Simon’s type (for example[8]).

In the present paper, we compute the covariant derivative of a shape
operator of a generic submanifold of a complex space form without using
the Green-Stoke’s theorem. In particular, we classify complete generic
submanifolds of a complex number space C™ with parallel mean curva-
ture vector satisfying a certain condition.
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1. Generic submanifolds of a Kaehler manifold

Let M be a real 2m-dimensional Kaehler manifold with metric tensor
<,> and the complex structure J. Then, J? = —J and < JX,JY >=<
X,Y >, where I denotes the identity transformation of the tangent bun-
dle and X and Y vector fields on M. Let V be the Riemannian connection
compatible with <, > . Then, we get V.J = 0. Let M be an n-dimensional
Rlemanman manifold 1%0mertr1call} immersed in M by the immersion

: M — M. We then obtain the induced Levi-Civ ta connection on M.
Then the equation of Gauss and Weingarten are respectively given by
ViV = VxY +h(X,Y)and Vyé = ~Ae¢X + Dx%. where h is the sec-
ond fundamental form, A¢ the shape operator asscciated to the normal
vector field ¢ satisfying < A(X,Y )¢ >=< 4¢X,Y > and D the connec-
tion in the normal bundle T+ M of M. An n-dimensional submanifold M
in a Kaehler manifold M is called generic if J(TL M) C T,M for each p
in M, where T, M is the tangent space of M at p and TJ“JU the normal
space of M at p.

We now consider an n-dimensional generic submanifold M of a Kaehl-
er manifold M. Let X be a vector field tangent to M and £ a vector field
normal to M. Then we may put

(1.1) JX = pX - ¢X,

(1.2) JE =t¢,

where pX denotes the tangential part of JX,¢X the normal part of JX
and t£ a vector field defined by < t£, X >=< ¢X,£ > . It follows from
(1,1) and (1.2) that

(1.3) pP=-I+tq, qp=0, pt=0, ot=1

REMARK. Let M be a generic submanifold of a Kaehler manifold.
We can easily find that p? + p = 0.

Differentiating (1.1) and (1.2) covariantly and making use of V.J = 0,
we obtain

(1.4) (Vyp)X = —A,xY +th(X,Y),
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(1.5) (Vy@)X = h(Y,pX),
(1.6) (Vyt) = —pAeX,
(1.7) h(X,1€) = gAX,

where (Vyp)X = VypX — pVy X, (Vyg)X = DyqX — ¢VyX and
(Vyt)€ = Vytf —tDx£ for all vector fields X and Y tangent to M and
¢ normal to M.

We now assume that the ambient Kachler manifold M is a complex
space form with constant holomorphic sectional curvature 4c¢ and we
shall denote it by M(c). Then the curvature tensor R of M(c) is given
by

<RX,)Y)ZW >=c{< X,W><Y,Z>-<Y,W><X,Z>
+ < JXW><JY,Z>-<JY, W><JX,Z >
—2< JX)Y >< JZ,W >}.

It follows from (1.1) and (1.2) that the equations of Gauss, Codazzi
and Ricci for M are respectively obtained
(1.8)
<RXY)ZW>=c{< X, W><Y,Z>-<VW><X,Z >

+<pX,W><pY,Z > - <pY, W >< pX,Z >
-2<pX,) Y ><pZ W >}+ < WX, W), h(Y,Z) >
- < hX,Z),hY,W) >
(1.9) ,,
(Vxh)(Y,Z) = (Vyh)(X,Z) =c{— <pY,Z > ¢X
+<pX,Z>qY +2<pX,Y > qZ},

< RYX,Y)E,n >=c{< ¢X,n >< qY,£ >

(1.10)
— < qY,n >< X, € >}+ < [Ag, 4] XY >,
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where V is the operator of covariant differentiatior. defined on the direct
sum of the tangent bundle and cotangent bundle TM ¢ TLM given
by (Vxh)Y,Z) = Dxh(Y,Z) -~ H(VxY,Z) - h(Y,VxZ).R and R+
and the Riemann curvature tensor of M and that in the normal bundle
respectively and [A¢, A,] = A¢A, — A4, 4¢. Let H be the mean curvature
vector field on M defined by %Trh, where Trh means the trace of h.

2. Basic formulas

Let M be an n-dimensional generic submanifold of a real 2m-dimensio
nal complex space form M(c) of constant holomorphic sectional curva-
ture 4c. A normal vector field £ is said to be parallel if Dxt = 0 for
any vector fileld X on M. We assume that the mean curvature vec-
tor field H is nonvanishing and parallel in the normal bundle. Let
{er,e2,- en, &1,6p, - .€2m—n} be an orthonormal frame of M(c) of
M such that e;,¢y,--- e, are tangent to M and ¢1,€;. -+ . €2pm_p, nor-
mal to M with {; = H/||H||. Let 'A be the so-callec restricted Laplacian
operator (see(8] for detail). Let A¢, = A,. Throughout this paper the
indices ¢, j and k run over the range {1,2,--- ,n} and r.y,z,u belong to
{1,2,---,2,,_,}. Since £ is parallel, 'AA; is giver by
(2.1)

('AAX = Z[_R(e,-,X),AIJe,»Jcm Ve - <té,e; > pX

(3

+ <€, X >pei -2 < pX,e; > €}

By straightforward computation and making us: of (1.4) - (1.7), we
can obtain from (2.1)

<(AANX)Y >=c(n+3) < 4, X,Y > —c(Trd;) < X.¥ >
+(Trd)) < A1 X, A Y > — Z Tr(A1A; < A, X,Y >

+ 3C(TI'A1) < tﬁl,X >< t&la Y > —6c< Alp)(,p}’ > —

(2.2)
Y {B<AIXHE, >< Y 6, > + < A Y 6, >< X, 46, >

+2 <A Xt ><Y > - < A, Yt >< X, té, >
+ <A Xt >< Y, 16 >).
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We now define the property(x*):
(*) App = pA,

for any vector field # normal to M, which is equivalent to h(pX,Y) +
h(X,pY) = 0 for any vector fields X and ¥ on M.
Applying p to (x) and making use of (1.3), we get

(2.3) ApX = —pA,pX + tqA, X

for any vector field X tangent to M. If we put X = ¢( for some vector
field ¢ normal to M, then

(2.4) Apt( = th(t(,tn)

because of (1.3). Let {£1,&2, - ,€2m_n} be an orthonormal normal vec-
tors at a point p of M. Then we may set (2.4) as

(2.5) At =Y Q& )ty

where Q(fzyCﬂi) =< h(tC,tn),fz > . If we put szz = Q(ém&/aﬁﬂa

then we can easily see that @), is symmetric with respect to z,y and =z
by means of (1.7). We now assume that the mean curvature vector field
H is nonvanishing and parallel in the normal bundle and ¢; is chosen
as H/||H||. We extend &1,&2,-+ ,€om—n to differentiable orthonormal
normal vector fields defined on a normal neighborhood O of p by parallel
translation with respect to normal connection along geodesics in M and
we denote them by the same notation as £;,&,, -+ , £2m—n. Then we have
(Dx€x)(p) = 0. From (2.5) we get

(2:6) Artly = Q&r, £y, E1)tEx

It gives that

<h(X,t6,),6>= > Q(€z,€y,61) < t&4, X >
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for any vector field X tangent to M. Differentiating this equation covari-
antly and making use of (1.6) and (*), we find

(Vyh)(X,tE,), 6 > — < B(X.pA,Y ), &, >
=Z(YQ(EI.£y,£1)) <té, X > —}:Q(fr,fy,&) < pA.Y,X > atp.

By means of the equation of Codazzi, we get

2¢ < pY. X > 6,142 Q€. 6y, 61) < pAs, X >

- <plAjA, + A,ADY. X >
(2.7) =Y (Y QU 6. 61)) < 16, X >

=Y (XQUer by &) < tE.,Y >
If we put X = t£, and use (1.3), then we see that the right hand side
vanishes. On the other hand, the fact that £; is parallel implies

(2.8) (A1dy — AJANX = o< ¢X .6 > t8,— < ¢X. &, > t6}
for any vector field X on M. Considering (2.8), (2.7) yields

AyArpY = cbyipY + ) Q62,6 €1 ALpY

for every vector field Y on M Applying p to the last equation and using
(1.3), we obtain
(2.9)

AyArY = cbyi(I—tq)Y + Y Q€ &y, 61)AY
=YD QU &y E)Q(E gV &0) — QUEay gV E)Q(Ex, Er £ HE,.

Combining (2.8) and (2.9) and making use of the fact that Q(¢&,, €. €2)

is symmetric with respect to x,y and z, we have
Z{Q(éza éw: 61 )Q(E: gza {y) - Q(frt Ew-, gy)Q(ﬁzv grv 51 )}
(2.10) x
=c(—by:01w + Oyubiz).
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Together with (2.10), (2.9) implies that

(2.11) AT = Q6. £1,6) AL + (I —tg).

Putting (2.2) and (2.11) together and taking account of (2.5) and (2.6),
we obtain
(2.12)

<("AADXY >=c{-2< A1 XY > +2(TrAy) < t&, X >< t£,.Y >

+23 3 Q(6e by br) <t X >< 16, Y >
r oy

"ZZQ(ﬁx,Ey.,éy)k te, X >< t£1,Y >+ < t6, X >< t€,.Y >}
r oy

for any vector fields X and Y on M. Putting X == t£; and Y = t£;, we
have

(2.13) < ('AAE ) >=2e{Trd; — Y _ Q& 62,61}

If we denote Q(&1,&1,£1) by @, then

(2.14) (XQ)(p) =< (VxA1)tlr,t& > (p)

for any vector field X on M because of (1.3) and (1.6). If we choose an
orthonormal frame {e1,- - , e} satisfying (V. e;)(p) = 0. Then we have
(2.15)

(AQ)(p) =< ('AA))tEr, tey > (p) —2) | < (A, A1)tér, pAre; > (p)

since A1 is symmetric, where A denotes the Laplacian operator defined
by -V, Ve, — Vy, e;. Using the another form of equation of Codazzi,

1
that is,

(VxAp)Y = (VyAp)X + ApyyY — Apy X
= the tangential part of R(X,Y )n
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for all vector fields X and ¥ on M and a normal vector field n on M,
we can reduce (2.15) to

(AQ)(p) =< ("AA )&, & > (p) —262 < pei,pAre; > (p)

with the help of (1.3) and (1.4). Taking account of (1.3) and (2.13), we
obtain

(AQ)(p) = 0.

This equation holds for every point p in M. Thus 4 is a harmonic func-
tion on M. It follows that TrA? is also harmonic.
We now define a tensor T by

T(X,Y)=(VxA)Y T—e{<pX,Y > thH+ < qY, & >pX}.
We then have
(2.16) IT11%(p) = [IVA][*(p) — 4c*(n — m)

because of (1.3). Putting X =¢; and Y = Aje; in (2.12) and summing
up together, we obtain

(2.17) D < ('Ady)ei, Ares > (p) = 4cX(m — n)

with the help of (2.11). Putting (2.16) and (2.17) 1ogether, we have
IT|1*(p) =

for every point of p in M since TATrA? =<' AA;, 4; > +||AA,]|% that
is,

(2.18) (VxA)Y = c{< pX,Y > t&1+ < qY. €y > pX )

for all vector fields X and ¥ on M.

NOTE. By considering (2.8), we see that  and TrA? are constant
along M.
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PROPOSITION 2.1. Let M be an n-dimensional generic submanifold
of a complex space form M(c) with nonvanishing parallel mean curvature
vector H. If (*) is satisfied on M, then all the principal curvatures of H
are constant.

PROOF. If we defined a function hy = Tr(A’;I) for any integer k > 1,
then Ay is constant by considering (1.3), (2.5) and (2.18). Thus, every
principal curvature of H is constant. (Q.-E. D)

3. Generic submanifolds of a complex number space

In this section we assume that a generic submanifold M of a com-
plex number space C™ satisfies the condition (*) in section 2 and the
mean curvature vector field H is nonvanishing and parallel in the normal
bundle. Then we have from (2.18)

PROPOSITION 3.1. Let M be an n-dimensional generic submanifold of
a complex number space C™ with nonvanishing parallel mean curvature
vector H. If (*) is satisfied on M, then the weingarten map A y associated
to H is parallel.

We now prove

THEOREM 3.2. Let M be an n-dimensional generic submanifold of a
complex number space C™ with nonvanishing parallel mean curvature
vector H. If (%) is satisfied on M, then M is either a minimal submanifold
or a product submanifold M; x My x---x M,, where My (t =1,2,--- Ja)
is a n¢-dimensional submanifold imbedded in C™ and M, is contained
in a hypersphere in C™:.

ProorF. If H = 0, then M is minimal. Suppose that H # 0. By
Proposition 3.1, Ay is parallel. According to Proposition 2.1, we see
that every principal curvature of H is constant along M. Let ¢y, cq, -+ ,cq
be mutually distinct principal curvatures of H and let ny,na,--- ,n, be
their multiplicities. Since A g is parallel, the distribution D, defined by c;
is parallel and hence M is a product of submanifolds M; x M, x...x M, by
de Rham decomposition Theorem, where M, is the integral submanifold
of D, for each t = 1,2,--- ,a. Moreover, A,D; C D, for each z and ¢
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since [Ay, A;] = 0. The theorem of Moore [7] gives that M = M, x M, x
-++ X M, is a product submanifold imbedded in C™ = C™ x C™2 x ... x
C™ . my+myg+---+m, =m. Let 7¢(H) be the component of H in the
subspace C™. Then my(H) is the parallel mean curvature vector of M,
in C'™ and it is a umbilical section of M;. Thus, M, lies in a hypersphere
in C™* which is orthogonal to my( H). Futhermore. M, is minimal in the

sphere. (Q.E. D))

REMARK. ([5]) Let M be an n-dimensional complete generic sub-
manifold of complex number space C™ with flat normal connection and
parallel mean curvatrue vector. If (*) is satisfied on M, then M is a
product of spheres.

4. Submersions and immersions

Let 7 : S?™*!1 , CP™ be the Riemannian submersion defined by
the Hopf-fibration, where $2™*! is the unit hypersphere and CP™ the
complex projective space with constant holomorphic sectional curvature
4. Then we get

(4.1) VxY* = (ViY)'+ < JX.V > V.

(4.2) Vx-V=VyX"=—(JX),

where V' is the unit vertical vector field whose integral curves are great
circles S1 of S?™+1 X* denotes the horizontal lift of X on CP™ and
V the metric connection on $2™+!. Then < XY > (¢g) =< X*Y*>
(), where #g¢ =q. Let M be a generic submanifold of complex pro-
jective space C'P™. Denote by M = 7#~!(M), the inverse image of M.
Then M is a principal circle bundle over M with totally geodesic fibres.
From this fact we have the following commutative diagram

M — ., gmtl
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where i and 7 denote the immersions and 7 = #|y. Since V spans the
vertical subspace of the submersion # : $2™*! .5 CP™, we have the
orthogonal decomposition

(4.3) ToM = (TonM)*@® Span {V}.
By the Gauss equation and (1.1) we find
(4.4) Vx:Y* = (VxY) + (X, Y)"+ < pX,Y > V

for X,Y tangent to M. Let £ be a normal vector field of M in CP™,
(4.1) gives
Vet = (VxO)*+ < IX.£ >V,

which together with the Weingarten equation and (1.1) implies
(4.5) A X* = (AcX)*+ < ¢X, >V,

(4.6) Dx¢* = (Dx¢)*

where A denotes the Weingarten map of M associated with £* and D
the normal connection defined in the normal bundle of M. Let V' be the
metric connection on M.

Then we have

(4.7) Vx-Y* = Vi Y* + h(X* Y7),

where A denotes the second fundamental form of M in S2™+1, Combining
(4.1) and (4.7), we obtain

(4.8) YT = (VY )Y+ <pX,Y >V,

(4.9) MX*Y*) = WX, Y)"
From (1.1), (4.2) and (4.7), we get

(4.10) MX* V) = (¢X)",

(4.11) LV = VX = —(pX)*.

Since V is the unit vector field tangent to the totally geodesic fibres,
we have

(4.12) R(V,V) = 0.

It is well-known (for example, see[5])
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LEMMA 4.1. Let M be a submanifold of CP™. Then the mean cur-
vature vector of M is parallel in the normal bundle if and only if that of
M is parallel in the normal bundle.

LEMMA 4.2. Let M be a generic submanifold of CP™ with non van-
ishing parallel mean curvature vector field H. Ifh(X,pY)+H(pX,Y) =0

is satisfied on M, then A, is parallel, where A, is the weingarten map
associated with £} and &, = H/||H||.

PROOF. Let’s comput (V'y. 4,)Y* :

(4.13) (Ve ADY* = Vi A Y — A Vi Y™
By (4.8) we see that

AV Y =4 {(VxY)+ < pX,Y >V}

4.14 .
( ) =(A1VxY)'+ < ¢gVxV. & >V < PX,)Y > AV

because of (4.5). Differentiating A;Y* = ={A4Y)*+ < qY, & > V covari-
antly, we get

e AY T = VA (AY) + X <Y, 6 > V4 < qY 6 > ViV,
or, using (4.8) and (4.11),

Vi Al Y  =(Vx A Y)V+ < pX, A, Y >V

(4.15) .
+X < qY, & > V—<gY, 5 > (pX)™.

Substituting (4.14) and (4.15) into (4.13) and using (1.5), we obtain

(V=AY =((VxA1)Y) '+ < pX, A Y > Vit < W(X,pY), 6, > V
— < qYV, & > (pX)*— < pX,Y > A,V

We now suppose that h(X,pY) + h(pX,Y) = 0. Then the last equation
can be reduced to
(4.16) i

(Vi ANY™* = (VxA)Y) — < ¢Y, & > (pX)"- < pX,Y > A,V.
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On the other hand, we find by (4.12)
(4.17) < (Vi A)Y*,V >=0.
We now consider :
< (V% ADY* Z* >= < (VxANY,Z > — < qY, & >< pX,Z >
—<pX,)Y >< AV, Z* >
=< (VxA))Y-<gY, & >pX
—<pX,Y >t,Z2 > (By(4.10))
=0 (By (2.18) with ¢ = 1)
and
(VY ANV, X*>=Y*< AV, X > - < 4;VL. V, X* >
— < AV, VY. X >
=Y < h(X* V), €8 > — < h(X*,(pY)*), 61 > — < A(V, Vi X*), £* >
=Y < qu‘fl >+ < h(XapY)vé-l >+ < qu)(:{l >
=< MY, pX > +h(X,pY ), £ >=0.

We also easily obtain < (VyA;)Y*, X* >= 0. Similarly, we can compute

< (VG ANY*SV >=0, (ViA)V =0.

Summing up these results, we find that A; is parallel.

(Q. E. D.)

By the same argument developed in the previous section, we see that

the principal curvatures of £} are constant and M is a product of sub-
manifolds M; x My x --- x My. Thus we have

THEOREM 4.3. Let M be a generic submanifold of CP™ with non
vanishing parallel mean curature vector field H. If (X, pY )+ h(pX,Y) =
0 is satisfied on M, then M is the projection of a product of submanifolds
7(My X My X - -+ x My), where # is the natural projection defined by the
Hopf -fibration §! — §?m+! , Cp™,
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