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ON THE PARTITION OF UNIPOTENT RADICALS OF
PARABOLIC SUBGROUPS IN CHEVALLEY GROUPS

SAE Ran KwoN

ABSTRACT. Let P; be a standard parabolic subgroup of a Chevalley
group G and U; the unipotent radical of P;. In this paper, we find
a certain partition of the set of roots corresponding to root subgroups
generating U and investigate some properties of the partition.

1. Introduction

Let & be a root system in a Euclidean space E equipped with a
positive definite scalar product ( , ) andlet A = {a1,...,a¢} be a fixed
base of the root system ® [Hu]. We denote ®* the set of positive roots
in ®. Denote W the Weyl group of ® generated by the simple reflections
wy, ¢+ = 1,...,¢, corresponding to simple roots a;. For z,y € E, we
denote
(z,y)

(v, )

Let J be a subset of I = {1,...,£}. Then A} is a subset of A such as
{a; € Alj € J}, ®;is the subsystem of ® spanned by {a; |j € J} and
W is the Weyl group of ®; generated by {w;|; € J}. Then W acts
on &t — & ;. We assume that ® is irreducible and J # I. Throughout
this paper, we shall assume that the numberings of a; € A are those of
[Hu, p. 58].

Consider a Chevalley group G derived from any type representation,
over a field F, defined by a complex semisimple Lie algebra with a root
system @ (see [St]).

<:E,y> =2
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Let P; be the parabolic subgroup of G corresponding to the subset
J of I. Then we have a Levi decomposition P; = L;U; with a Levi
subgroup L ; and the unipotent radical U; of P;. The unipotent radical
Uy is generated by {z4(t) |a € @+ — &, t € F ), where T4(t) is an
element of G corresponding to a root a € ®+ — &; and t € F (see
[Ca]). Gibbs [Gi] characterized the automorphisms of U; when J = §
and char(F) # 2,3, and Khor [Kh] did the same thing when & = Ag,
J # 0 and char(F) # 2.

We denote Z* the set of all positive integers including 0.

DEFINITION 1.1. [Le] Set n=¢—|J|and J' =1~ J = {iy,...,i,}
with 1 <1p <ig < < i, <8, For a € " — @, we say that o is of
type A if

a = a105, + a2, + - + apa;, + (terms in oy, j € J),

where A = (ay,aq,...,a,) € (Z1)".

Then we know that a W-orbit of ®+ — & ; can be characterized by
its type (a lattice point in (Z*)¢~171) if there exist roots only of the same
length of the type [Le]. By the way, there may exist different orbits of
the same type in some cases, that is, in cases that there exist two kinds
of roots of different lengths of the same type.

In this paper, whether the lengths of roots in a type are all equal or
not, we show that there exists a unique root with minimal height among
roots of the same type and, similarly, there exists a unique root with
maximal height even though different orbits of the same type exist.

Also, we introduce J-roots. Let J = {j1,jq..... Jm} with 1 < j; <

N2< - <jm<étand J =1—-J = {i, i b with1 <i) <0 <
tn <€ Sol=JUJ and £ =|I| = |J| 4 |J'| = m + n. We define the
following:

DEFINITION 1.2. For @ = a1a;, +-Faga;, tk aj 4+ kpaj €
&t — @ with ki,... km € Z%, the set
(@) = {a1i; + -+ + anai, +t1aj, + - + tpay,
€¢+—¢J't_g€Z+, 1<s<m}
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is called a J-root.

We then define the addition of J-roots and show that the addition
of J-roots can be characterized by the addition of corresponding lattice
points. As aresult, we obtain a partition of ®+—& ; by J-roots. Since U
is generated by z,(t) fort € F and o € &1 — @ ;, it seems that the notion
of J-roots plays an important role when we study the automorphisms of

Uj. (See [Gi], [Kh], and [Je].)

2. A Partition of &1t — &

For a € ®* — @, let [a] denote the W j-orbit containing a. Then,

THEOREM 2.1. Let a and 3 be roots in 8+ —® ; with the same length.

Assume that a and § are of types A and B, respectively. Then [a] = [f]
if and only if A = B.

PROOF. See [Le]. O

COROLLARY 2.2. Let o and 8 be roots in @ - & ;. If [a] = [3], then

(a) = (B).

PROOF. Assume « is of type A and 3 is of type B. If [a] =[], then
B = w- a for some w € W,. Since the action of w; for j € J possibly
changes the coefficient of aj, we have A = B. Sirce A = B if and only
if (a) = (B) by definition, even though lengths of roots a and 3 are
different, we show (a) = (4). O

However, the converse of Corollary 2.2 is not true. For example, let
® be of type B; denoting a; as the longer root and J = {1}. Choosing
the roots a = a; + a3 and 8 = a3, we get a counterexample.

PROPOSITION 2.3. Assume that o is a root of the maximal height
among roots in its orbit [a]. Then for any root 8 in [a], o — 3 is a sum
of simple roots a; for j € J. Therefore, such a is uniquely determined.
Also there is a unique root of minimal height in each orbit.
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PROOF. See [Le]. O

In the proof of the following proposition, we exclude the case of the
root system ® = G,. But the proposition is also true to the case of
® = G4, which is easily checked by direct observation of the roots of G.

PROPOSITION 2.4. Let a be aroot of 8 —® ;. Then there is a unique
root with minimal height in (a), and also a uniq e root with maximal
height in (a).

PROOF. Let A be the type of the root a. If all roots of type A in
¢+ — & ; have the same length, we can apply Propcsition 2.3 to this case,
because (&) = [a] by Theorem 2.1.

If roots of type A have different lengths, let r, be the root with
minimal height among short roots of type A and r; the root with minimal
height among long roots of type A. This is possible because. in an
irreducible root system ®, at most two root lengths occur [Huj, and
by Proposition 2.3, there is a unique root with such property in each
orbit. Since r; and rq are roots with minimal Leight in their orbits,
(r1,a;) <0 and (ro.a;) <0 for any o; € A ;. Therefore, if (ro,.r1) <0,
{ro,71} U A is a linearly independent set. We -an show this by the
argument showing the fact that any set of vectors lying strictly on one
side of a hyperplane in F and forming obtuse angles pairwise must be
linearly independent. But this is absurd, since 7; — Ty = ZJEJ ko
(kj € Z). So (rg,r1) > 0. Therefore ro — ry and r, — ro are roots.
Suppose 7y — rg is positive. Then

2(ry,m1 — 7o)
T1,71 — Tg) = = 2
i o) (r1—ro, 71 — 7o) ’

since ry is a long root and r| —ry is a short root. So ry — 2Ary—ry) € @,
Also, ry — 2(ry —rg) = 2rg — r; is of the same type with r;, that is type
A, because ri —rg € Y ZA .

Now, the length of the root 2ry — ry is long and ry = (2rg — ry) +
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2(ry — ro), which is depicted in Figure 1.

N
r: -2(r1- Io)

=2r-1

P
N\

Figure 1

But this makes a contradiction to the minimality of r; among the long
roots of type A.

So ro — 71 is positive. And since ro = ry+(ro —r;), we conclude r; is
the root with the minimal height among roots of type A. Here we note
rg — ry is a short root.

Now, consider the maximality. By the method similar to the above,
in the case that roots of type A have different lengths, we put uo as
the root with maximal height among short roots of type A and u, as
the root with maximal height among long roots of type A. Then pq is
a member of the orbit [r¢] and g is in the orbit [r;]. So we can write
to = w - 1o for some w € W. Since ry = ry + n for some short root 7 in
¢-‘;"

Ho=w-Tog=w- -7 +w-n.
Then, since r; € @t —&; and w € W, w-r, is a long root in &+ — &
of type A and w -7 is a short root in ®;. Now for the notational
convenience, put w-r; = § and w7 = u, so py == 3 + u, where 3 is a
long root of type A and wu is a short root in & .

If u i1s negative, —u is in @j. Then we can write § = po + (—u). It
means 3 > pg. (Here the symbol ‘<’ means that 3 < o iff a — 3 is a
sum of positive roots or f = a for a, 3 € ®.) Also u; > 3, because y,
is the root with maximal height among long roots of type A.

So py > po and also we can write u; = pg + 6, where 6 is a sum
of positive roots in ® ;. Therefore, y; is the unique root with maximal
height among roots of type A.

If u is positive, consider the value of (uo,u). Since g is a root of
short length, (pp,u) < 1. Therefore,

<#0’u> = (/3'!'“7") = (ﬁ’u>+2.§ 1.
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So (8,u) < —1. Then (8,u) = —2, because 8 is a long root and u is a
short root.

So 3 + 2u becomes a root and also is a positive root of type A with
long length. Therefore yy > 3+ 2u because y; is & maximal height root
among long roots of type A. Also 3+ 2u = (34 u)+ u = pyg + u. So
B+ 2u > po. Therefore puy > po and also we can write pu; = po + 6,
where ¢ is a sum of some positive roots in @ ;. [

From now on, for the convenience of notation, for roots a € &+ — & 5,
let @ denote the root of maximal height among roots in (@) and a the
root of minimal height among roots in («). By above proposition, those
are well-defined. So if the root a is of type A = (a,....,a,), we can write
@ =aja;, + -+ apai, +biaj, + - +byaj for some by, ..., b, € Z1,
and @ = a1, +- -+ a0, +cia;, +--+cpaj forsomecy,....cp €
Z*, where J = {j1,....jm}and I — J = {i1,...,1,}.

Now, we define the addition of the J-roots in ¢+ — @ ;.

DEFINITION 2.5. For a, 3, and v in &% — & ;, we say (a) + (83) = (v)
if there exist o' € (a) and B’ € (3) such that o’ + 3’ is a root and
o' + 8" € (7).

THEOREM 2.6. Let ® be an irreducible root system. And let o and
B be roots in ®* — @ ; of types A and B, respectively. If there exists a
root v of type A + B in ®, then (o) + (3) is the same J-root as (7).

PROOF. Since ¢ is a minimal height root of type A, that is, a root
of minimal height in the root set {a), 8 is that of type B and 7 is that
of type A + B, we can write

(1) Yy=a+B+zi05 4 A T, for some z1,..., 2, € Z,

where aj,,...,a;, € Ayfor J = {j1,...,Jm}

Moving terms a;,’s whose coefficients zx’s are negative for some k’s
belonging to {1,...,m} in the righthand side of equation (1) to its left-
hand side, we can rewrite equation (1) as following:

(2) Y+ Z Yraj, = a+ 8+ Z T o5, ,

Je€Jy k€ J2
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where J; = {jx € J|zr < Oinequation (1)}, J» = {jkx € J|zx >
0 in equation (1) } and yx = —z; for j; € J;.
Therefore, the coefficients {yx |jx € J1 } and {z4|jr € J2 } in equa-
tion (2) are all positive integers. And the sets J; and J, are disjoint.
Let e =~ + ijEJl yra;,. Then

() =(1+ Y vkoje, a+ B8+ Y zxa;,)

Jr€N1 JkE€EJy
= (o) + @8+ Y wran)+ Y uklej,,q)
Je€J> Tk €N
+ Z Yk a]k’ﬂ Z YkTs O‘kaah)
Jk€N ik €Jq
J.sEJz

Therefore, if (y,a) < 0 and (v, 8) <0, we have (¢,€) < 0, because 7, a,
and J are the roots with minimal heights in the roots of their own types,
having the property that (1,05,) <0, (a,a;,) <0, and (§,a;,) <0 for
all aj, € Ay, and because _(_Oz]'k ,o,) < 0 for simple roots a;, # a;,.

It forces that € = v+ > . ; yxa;, = 0. But, it contradicts the
fact that y € @+ — &;. So it should be that (y,a) > 0 or (y,8) > 0.
Therefore, by [Hu, 9.4], ¥ — @ may be a root or ¥ — 3 may be a root, in
that case, they are included in &+ — & .

If y —a is a root, since ¥ —a has the same type as that of 3, the roots
ain (a) and 7 — a in (§) satisfy

a+(y—a)=7€(y) te <a>+ <P >=< v > by Definition 2.5.

Also, for the case of Y- ﬁ € &t — &, we use the same argument. [J

COROLLARY 2.7. Let a, 3, and v be roots of type A, B, and C,
respectively. Then

ifand only if A + B =C.

PRrOOF. By the above theorem and the definition of the addition, we
can easily prove the statement. [
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COROLLARY 2.8. Let a and 3 be roots in % -- @ ; of type A and B
respectively. And v be the root in ®* — ® ; of type A + B. Then we can
write

12_&_’+ﬂ+x10]-1 + -t rmay,, for some ry,....7, € Zt,
where o, ..., , are rootsin Aj.

Proor. First, by assumptions, we can write

(1) T=a+ B+ ri0 -+ Tea;,, for some zy,...,0, € Z.
Then, by above theorem, we know (y,a) > 0 or (v 3) > 0. If (y.a) > 0,
7 — ais a root of @+ — & ; with the same type as (_p’) Therefore
y—a=3+yia, + -+ ymay, for some yi,...,1rm € Z*, because 3 is
the root with minimal height in (3). B

But since y—a = 3+ 214, + -+ zma;,, for some z;,... 2, € Z,
by the equation (1), (?;1 —xi)aj, + -+ {Ym — Tin)ay, = 0. Therefore,
Y1 =1....,Yym =Imand z; >0 forall 1 <j3<m. O

DEFINITION 2.9. [Le] A J-root is called an irdecomposable J-root
if it cannot be written as a sum of two (not necessarily distinct) J-roots.

DEFINITION 2.10. [Le] Let (a) be a J-root. We define the level of
(a) by the sum of coefficients with respect to the set {{a;)|i € [ —J}.
Here we can easily show that the set { (a;) |7 € I—J } is a basis of a real
vector space consisting of J-roots. Note that the l:vel of (a) is equal to
the sum of the coordinates of A, where « is of type A.

PROPOSITION 2.11. For any a € ®T — &, (a) can be written in the
form

<(l’>:<0'k]>+"'+<akt>’ kl,...,l‘tEI—J

in such a way that (ax,) + -+ {ax,) is a J-root for any s = 1,...,1,
where (ay,)’s for 1 <1 <t are not necessarily dis:inct.

PROOF. Assume that the type of (a) is A = iay,....a,) and a; +
et a, £ 1.

First, we choose @ € («), the root of minimal height in (o). Then
there exists a root «; for some i € I — J such that (@, a;) > 0, because
(a,a;) <0forallj € J. Since (o) = (o) = (@—a; +{a;) and {(a—a;) is
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a J-root with a level smaller than that of («), we show the proposition,
if we use an induction on the level which is the sum of the coordinates

of A. O

REMARK 2.12. [Le] If ¢ is an automorphism of Uj, then ¢ is de-
termined by its action on X4y such that the level of (o) = 1, where
X(o) = (zp(t)| B € (a),t € F) and z3(t) is an element of the chevalley
group G corresponding to a root 3 € ®* — & ; and ¢t € F. It seems that
the level function on J-roots plays an important role when we study the
automorphisms of U ;.
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