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MONOMIAL CURVES WHICH ARE
SET-THEORETIC COMPLETE INTERSECTIONS

J. H. KEUM

ABSTRACT. We prove that some monomial curves are set-theoretic com-
plete intersection of two surfaces. We also give explicitly the equations

of corresponding surfaces

Throughout the paper we assume that the ground field k is of arbitrary

characteristic.
For an ordered triple p < ¢ < r of nonnegative integers, let Cp 4 r

denote the curve in P3 given parametrically by

w=s

z = 3" PP
(*) y = 5Tt

z=1"

where (s:t) € P!. We will call such a curve monomial.

Note first that if d = ged(p, q,7), then Cp 4.r = Cpr gt v, Where p' = &,
¢ =4, r" = I So from now on we assume ged(p,q,r) = 1. This
assumption implies that the parametrization (*) is injective and hence
can be viewed as a resolution of singularities of the curve Cp 4 ..

It can be shown that C, 4, is smooth if and only if (p, ¢,r) = (1,1,1),
(1,2, 2),0r (1,7 =1,7).

In characteristic zero it is not known whether the smooth curves
Cir-1,r (r > 4) are set-theoretic complete intersections. (In fact, no
smooth curve C with degree (C') > genus (C) + 3 has ever been de-
scribed as the set-theoretic complete intersection of two surfaces.)
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In positive characteristic it was Hartshorne who gave mysterious cal-
culations showing that C1,r-1,r are set-theoretic complete intersections
[H2]. In this short note we will deal with singular monomial curves over
arbitrary charactericstic. Qur main result is as follows.

THEOREM. (i) If r = aq — b for some integers a, b such that 0 <b<yq,
1+ b < a, then the monomial curve C'1,q.r 15 a set-theoretic complete
intersection.

(ii) If r = a(r — p) — b for some tegers a,b such that 0 < b < —p,
1+ b < a, then the monomial curve Cp.r—1,r 18 a sct-theoretic complete
intersection.

The second result is contained in [RV], but we give here explicitly the
equations of corresponding surfaces (See Theorem 1 and 2}).

1. THEOREM. Ifr = aq—b, for somne integers a. b such that 0 < b < g,
1+ b < a, then the monomial curve Cy q,r 1s the set-theoretic complete
intersection of the two surfaces with equations

ywi™! = 29

and

q-—1
20" 4 Z(_l)q—k <Z> zkyr"ka:pkbwk(”_b~]) = 0.
k=0

PROOF. Note first that the second equation makes sense, because all
the exponents are nonnegative by the condition on ¢ and r. We will
show that the intersection of these two surfaces is Cigr

If w = 0, then from the first equation z = 0 and from the second

equation y = 0, so there is only one point with w = 0, and that is on
the curve (' , ,.
If w# 0, we can set w = 1, 2 = ¢, and it is sufficient to show

that the only common solution of those two equations is y = t? and
z =1t". Substituting w = 1 and « = ¢, the first equation becomes y = t9.
Substituting w = 1, « = ¢, and y = t9. the second eguation becomes

g—1
SR B(E Vs (Z) HFamyk = o,
k=0 ’
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This is simply
(z—tT)?=0.

So we have z = t7. (J

REMARK. (i) The curve C; , , in the above theorem is obtained as
an intersection of multiplicity ¢.

(i1) The following is the table of the triple (1,¢,7) covered by the
theorem.

(1,2,3) (1,3,5) (1,4,7) ... (1.¢.2¢—1)
(L, 2,4) (1,3,6) (1.4,8) (1,q,2q)
(1,4,11) (1.¢,3¢—1)

; i1,q,3q)

(lA‘q,4q—3)

(1.g,49 —2)

(1,q,4q)

(1.q,5¢ — 4)

(iii) The missing triples in the above table are

(1,3,4),(1,4,5),(1,4,6), - etc.

2. THEOREM. If r = a(r — p) — b for some integers a,b such that
0 <b<r—p, 1+b < a, then the monomial curve Cp, ,_, , Is the
set-theoretic complete intersection of the two surfaces

and

r—p—1
2PypTP n Z (_l)r_p_k (T‘ ;p) wkzr—kaykbzk(a—b—l) = 0.
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PROOF. Via the inversions (s:¢) — (t:s) anc (w:z:y: z) > (z:
Y : z:w), one can identify Cp,r—1,r with C1,r—p,r- Now the result follows
from Theorem 1. The equations for Cp,r—1,r can be obtained from the
equations for €y, by taking the inversion (w:z :y: z) — (z:y:
r:w) O

3. COROLLARY. C;_3 . (r > 3) is a set-theoretic complete inter-
section. The equations are

zz=y* and 2" "%w?- IV A TP L kR L g

wherer =2a—-b,0<b<2,1+b<a.
In particular, the affine curve in A3

CrozroreN(w #0)={(#7"2 ¢tV ")t € k)
is the set-theoretic complete intersection of
gz =y* and 2"7r_2g"%bebl L ar g

wherer =2a - b,0<b<2, 1+b6<a.
4. EXAMPLE. The equations for C3 45 are

zz =y? and z23w?-— 2wrlyz + 2’ = 0.

So the affine curve
Caa5 N (w #0) = {(¢3,¢*,¢%)t € k}

1s the intersection of the two surfaces in A3

gz =y* and 2% - 2z%yz+2%-=:0.

Compare this pair with Hartshorne’s pair ([H1] 3.4.5)

2=z and ' +y% - 2zyz == 0

whose homogenized equations define a reducible curve in P? having two
components C3 45 and the line (w = z = 0).
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