ON WEAKLY ASSOCIATIVE BCI-ALGEBRAS

Y. Q. Wang[†], S. M. Wei[‡] and Y. B. Jun*

ABSTRACT. In this paper, we introduce the notion of weakly associative BCI-algebras and investigate structure of it. Some of characterizations of elements of the quasi-associative part Q(X) of a BCI-algebra X are shown.

K. Iséki [3] introduced the notion of BCI-algebras as a generalization of one of BCK-algebras. Q. P. Hu and K. Iséki [1], T. D. Lei and C. C. Xi [4], and C. C. Xi [13] introduced respectively the notions of associative, p-semisimple and quasi-associative BCI-algebras. In this note, we introduce the notion of weakly associative BCI-algebras and investigate structure of it. Some of characterizations of elements of the quasi-associative part Q(X) of a BCI-algebra X are shown.

First let us recall some definitions and results.

An algebra (X; *, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following axioms: for all $x, y, z \in X$,

- (I) ((x*y)*(x*z))*(z*y) = 0,
- (II) (x * (x * y)) * y = 0,
- $(III) \ x * x = 0,$
- (IV) x * y = y * x = 0 implies x = y.

A partial ordering \leq on X can be defined by $x \leq y$ if and only if x * y = 0.

A BCI-algebra X is called a BCK-algebra if it satisfies

(V) 0 * x = 0 for all $x \in X$.

A subset S of a BCK/BCI-algebra X is called a subalgebra of X if $x * y \in S$ whenever $x, y \in S$.

Received February 16, 1996. Revised June 21, 1996.

¹⁹⁹¹ AMS Subject Classification: 03G25, 06F35.

Key words and phrases: Union algebra, ideal, weakly associative BCI-algebra.

^{*}Supported by the Basic Science Research Institute Program, Ministry of Education, 1995, Project No. BSRI-95-1406.

In a BCI-algebra X, the following hold:

- (1) $x \leq 0$ implies x = 0,
- (2) x * 0 = x.
- (3) (x * y) * z = (x * z) * y,
- $(4) \ 0 * (x * y) = (0 * x) * (0 * y),$
- (5) x * (x * (x * y)) = x * y,
- (6) ((x*z)*(y*z))*(x*y) = 0,
- (7) x * y = 0 implies (x * z) * (y * z) = 0 and (z * y) * (z * x) = 0.

J. Meng and X. L. Xin [9] introduced the notion of atoms. An element a in a BCI-algebra X is called an atom if x*a=0 implies x=a for all x in X. Note that if a is an atom, then a*x is an atom for all $x \in X$. Let L(X) denote the set of all atoms of X. Obviously, $0 \in L(X)$. For all a in L(X), the set $V(a) = \{x \in X : a*x=0\}$ is called a branch of X.

PROPOSITION 1. (Meng et al. [9]) Let X be a BCI-algebra. Then the following results are true:

- (8) For all $x \in X$, $0 * (0 * x) \in L(X)$ and $x \in V(0 * (0 * x))$.
- (9) If $a, b \in L(X)$, then $a * b \in L(X)$ and for all $x \in V(a)$ and all $y \in V(b)$, $x * y \in V(a * b)$.
- (10) If $a, b \in L(X)$, then a * x = a * b for all $x \in V(b)$.
- (11) L(X) is a subalgebra of X.
- (12) $a \in L(X)$ if and only if x * (x * a) = a for all $x \in X$.
- (13) If $a, b \in L(X)$, then 0 * (a * b) = b * a.

A BCI-algebra X is said to be associative if it satisfies

(14)
$$x * (y * z) = (x * y) * z$$
 for all $x, y, z \in X$.

A BCI-algebra X is associative if and only if it satisfies

 $(14)' \ 0 * x = x \text{ for all } x \in X.$

A BCI-algebra X is said to be quasi-associative if it satisfies

(15)
$$(x * y) * z \le x * (y * z)$$
 for all $x, y, z \in X$.

A BCI-algebra X is quasi-associative if and only if it satisfies

$$(15)' \ 0 * (0 * x) = 0 * x \text{ for all } x \in X.$$

For any BCI-algebra X, the set $B(X) = \{x \in X : 0 * x = 0\}$ is the BCK-part of X, the p-semisimple part of X is the set $P(X) = \{x \in X : 0 * x = 0\}$

X: 0*(0*x) = x, the associative part of X is the set $A(X) = \{x \in X: 0*x = x\}$, and the quasi-associative part of X is the set $Q(X) = \{x \in X: 0*(0*x) = 0*x\}$. If $B(X) = \{0\}$, we say that X is a p-semisimple BCI-algebra. A BCI-algebra X is p-semisimple if and only if X = P(X).

The following proposition is obvious.

PROPOSITION 2. Let X be a BCI-algebra. Then the following results are true:

- (16) L(X) = P(X),
- (17) $x \in Q(X)$ implies $x \in V(0 * (0 * x))$,
- (18) $Q(X) = \bigcup \{V(a) : a \in A(X)\}.$

PROPOSITION 3. (Meng et al. [10] and Wang [12]) Let X be a BCI-algebra and let $x, y \in X$. Then the following results are true:

- (19) $A(X) = Q(X) \cap P(X)$ and $B(X) \subset Q(X)$,
- (20) B(X), Q(X), A(X) and P(X) are all subalgebras of X, and B(X) and Q(X) are both ideals of X.
- (21) $x \in Q(X)$ if and only if $0 * x \in Q(X)$,
- (22) $x * y \in Q(X)$ if and only if $y * x \in Q(X)$.

THEOREM 4. Let X be a BCI-algebra. Then the following conditions are equivalent for all $x, y, z \in X$, $u \in P(X)$ and $a \in A(X)$:

- (23) $y \in Q(X)$,
- (24) $a * y \in A(X)$,
- $(25) \ 0 * y \in A(X),$
- $(26) \ u * y = u * (0 * y),$
- $(27) \ u * (x * y) = (u * x) * y,$
- (28) 0 * (x * y) = (0 * x) * y,
- $(29) \ u * (x * (z * y)) = u * ((x * z) * y),$
- $(30) \ 0 * (x * (z * y)) = 0 * ((x * z) * y),$
- (31) $x * y \le x * (0 * y)$,
- (32) $(x * y) * y \le x$,
- (33) $(x * y) * x \le y$,
- $(34) (x*z)*y \le x*(z*y).$

PROOF. $(24)\Rightarrow(25)$, $(27)\Rightarrow(28)$, $(29)\Rightarrow(30)$, $(31)\Rightarrow(32)$ and $(32)\Rightarrow(33)$ are trivial.

(23) \Rightarrow (24). If $y \in Q(X)$, then 0*(0*y) = 0*y and hence $0*y \in A(X)$. Note from (8) that $0*(0*y) \in L(X)$ and $y \in V(0*(0*y))$ for all $y \in X$. It follows from (10) that $a*y = a*(0*(0*y)) = a*(0*y) \in A(X)$ for all $a \in A(X) \subseteq L(X)$. Hence (24) holds.

 $(25) \Rightarrow (26)$. If $0 * y \in A(X)$ for $y \in X$, then 0 * (0 * y) = 0 * y. For all $u \in P(X)$, by (8) and (10) we have u * y = u * (0 * (0 * y)) = u * (0 * y). Hence (26) holds.

(26) \Rightarrow (27). If u * y = u * (0 * y) for $x, y \in X$ and $u \in P(X)$, then (u * x) * y = (u * x) * (0 * y). It follows that

$$u * (x * y)$$
= $u * (0 * (0 * (x * y)))$ [by (8) and (10)]
= $(u * 0) * ((0 * (0 * x)) * (0 * (0 * y)))$ [by (2) and (4)]
= $(u * (0 * (0 * x))) * (0 * (0 * (0 * y)))$ [by (8) and (11)]
= $(u * x) * (0 * y)$ [by (5), (8) and (10)]
= $(u * x) * y$.

Hence (27) holds.

(28) \Rightarrow (29). For $x, y, z \in X$ and $u \in P(X)$, if 0 * (x * y) = (0 * x) * y, then (0 * (x * z)) * y = 0 * ((x * z) * y). It follows that

$$u*(x*(z*y)) = u*(0*(0*(x*(z*y)))) \quad \text{[by (8) and (10)]}$$

$$= u*(0*(((0*x)*0)*((0*z)*(0*y)))) \quad \text{[by (2) and (4)]}$$

$$= u*(0*(((0*x)*(0*z))*(0*(0*y)))) \quad \text{[by (11)]}$$

$$= u*(0*((0*(x*z))*(0*(0*y)))) \quad \text{[by (4)]}$$

$$= u*(0*((0*(x*z))*y)) \quad \text{[by (8) and (10)]}$$

$$= u*(0*(0*((x*z)*y))) \quad \text{[by (8) and (10)]}$$

Hence (29) holds.

$$(30) \Rightarrow (31)$$
. If $0 * (x * (z * y)) = 0 * ((x * z) * y)$ for $x, y, z \in X$, then

$$(x * y) * (x * (0 * y))$$

$$= (x * (x * (0 * y))) * y [by (3)]$$

$$= (0 * y) * y [by (12)]$$

$$= (0 * (0 * (0 * y))) * y [by (5)]$$

$$= (0 * ((0 * 0) * y)) * y [by (30)]$$

$$= (0 * (0 * y)) * y = 0. [by (III) and (3)]$$

Hence $x * y \le x * (0 * y)$.

 $(33) \Rightarrow (34)$. For $x, y, z \in X$, if $(x * y) * x \leq y$, then

It follows from (1) that ((x*z)*y)*(x*(z*y)) = 0 or $(x*z)*y \le x*(z*y)$. (34) \Rightarrow (23). For $x, y, z \in X$, if $(x*z)*y \le x*(z*y)$, then

$$0 * y = ((x * z) * y) * (x * z) \le (x * (z * y)) * (x * z)$$
$$= (x * (x * z)) * (z * y) \le z * (z * y) \le y.$$

Hence $y \in Q(X)$.

Theorem 5. Let X be a BCI-algebra. Then for all $x, y \in X$ and $z \in Q(X)$,

- (35) $x * y \in Q(X)$ if and only if (0 * x) * x = (0 * y) * y.
- (36) $y \in Q(X)$ if and only if 0 * (z * y) = 0 * (y * z).
- (37) If $x \in Q(X)$ and $y \notin Q(X)$, then $x * y, y * x \notin Q(X)$.

PROOF. (35). For all $x, y \in X$, we have

$$((0*x)*x)*((0*y)*y)$$

$$= ((0*x)*(0*(0*x)))*((0*y)*(0*(0*y)))$$
 [by (8) and (10)]
$$= ((0*x)*(0*y))*((0*(0*x))*(0*(0*y)))$$
 [by (11)]
$$= (0*(x*y))*(0*(0*(x*y)))$$
 [by (4)]
$$= (0*(x*y))*(x*y).$$
 [by (8) and (10)]

If $x * y \in Q(X)$, then ((0*x)*x)*((0*y)*y) = (0*(x*y))*(x*y) = 0. So $(0*x)*x \le (0*y)*y$. Similarly, $(0*y)*y \le (0*x)*x$. Thus (0*x)*x = (0*y)*y.

Conversely, if (0 * x) * x = (0 * y) * y, then

$$(0*(x*y))*(x*y) = ((0*x)*x)*((0*y)*y) = 0,$$

hence $0 * (x * y) \le x * y$. Thus $x * y \in Q(X)$

(36). For all $y \in X$ and all $z \in Q(X)$, by (23) and (28) we have 0*(y*z)=(0*y)*z=(0*z)*y. If $y \in Q(X)$, then from (23) and (28) it follows that (0*z)*y=0*(z*y). Hence 0*(z*y)=0*(y*z). Conversely, if 0*(z*y)=0*(y*z), then (0*z)*y=0*(y*z)=0*(z*y). Hence $y \in Q(X)$.

(37). Suppose $x \in Q(X)$ and $y \notin Q(X)$. Since

$$\begin{aligned} &(0*(x*y))*(x*y) \\ &= ((0*x)*(0*y))*((0*(0*x))*(0*(0*y))) & \text{[by (4), (8) and (10)]} \\ &= ((0*x)*(0*(0*x)))*((0*y)*(0*(0*y))) & \text{[by (11)]} \\ &= 0*((0*y)*(0*(0*y))) \\ &= (0*(0*y))*(0*y) \neq 0 \end{aligned}$$

and

$$(0*(y*x))*(y*x)$$

$$= ((0*y)*(0*x))*((0*(0*y))*(0*(0*x))) \quad [by (4), (8) \text{ and } (10)]$$

$$= ((0*y)*(0*(0*y)))*((0*x)*(0*(0*x))) \quad [by (11)]$$

$$= (0*y)*(0*(0*y)) \neq 0,$$

we have $x * y, y * x \notin Q(X)$. \square

THEOREM 6. Let X be a BCI-algebra. If L(X) is an ideal of X, then so is A(X).

PROOF. Straightforward.

The following example shows that the converse of Theorem 6 does not hold.

EXAMPLE 7. Let $X = \{0, 1, 2, 3\}$. The binary operation * on X is defined by the following table:

Then it is easy to verify that (X; *, 0) is a BCI-algebra and $A(X) = \{0\}$ is an ideal of X. But $L(X) = \{0, 2, 3\}$ is not an ideal of X since $1 * 3 = 2 \in L(X)$, $3 \in L(X)$ and $1 \notin L(X)$.

From [11; Theorems 1 and 3] and [8; Theorems 5 and 6] we have the following theorem.

THEOREM 8. Let X be a BCI-algebra. Then the following conditions are equivalent: for $x, y \in X$, $a, b \in A(X)$, and $c \in L(X)$

- (38) A(X) is an ideal of X,
- (39) A(X) is an ideal of Q(X)
- $(40) \ Q(X) \cong B(X) \times A(X),$
- (41) x * a = c * a implies x = c,
- (42) x * a = 0 * a implies x = 0,
- (43) x*a = y*a implies x = y,
- (44) x = (x * a) * (0 * a),
- (45) (x*a)*(y*b) = (x*y)*(a*b).

From [2; Theorem 2] it immediately follows the following theorem.

THEOREM 9. Let X be a BCI-algebra. If A(X) is an ideal of X, then for all $x \in Q(X)$, there exist unique $u \in B(X)$ and unique $v \in A(X)$ such that x = u * v.

DEFINITION 1. A BCI-algebra X is said to be weakly associative if it satisfies

(46)
$$0 * (0 * x) = 0 * x \text{ or } 0 * (0 * x) = x \text{ for all } x \in X.$$

Theorem 10. A BCI-algebra X is weakly associative if and only if $X = Q(X) \cup L(X)$.

PROOF. Straightforward.

LEMMA 11. Let X be a weakly associative BCI-algebra. Then the following hold: for all $x \in Q(X)$ and $y \in L(X) - A(X)$,

$$(47) \ x * y = (0 * x) * y,$$

(48)
$$y * x = y * (0 * x)$$
.

PROOF. Let $x \in Q(X)$ and $y \in L(X) - A(X)$. It follows from Theorem 5 that $x * y, y * x \in L(X) - A(X)$. Using (4) and (12), we have

$$x * y = 0 * (0 * (x * y)) = (0 * (0 * x)) * (0 * (0 * y)) = (0 * x) * y$$
 and

$$y*x = 0*(0*(y*x)) = (0*(0*y))*(0*(0*x)) = y*(0*x).$$

Hence
$$x * y = (0 * x) * y$$
 and $y * x = y * (0 * x)$.

LEMMA 12. (Li [5]) An algebra (X; *, 0) of type (2,0) is a BCI-algebra if and only if it satisfies the conditions (I), (IV) and (1).

THEOREM 13. Let Y be a quasi-associative BCI-algebra and Z a p-semisimple BCI-algebra with $A(Y) = A(Z) = Y \cap Z$, and the operations of Y and Z agree on $Y \cap Z$. Define an operation * on $Y \cup Z$ as follows. If $x, y \in Y(\text{resp. } Z)$, then use the operation on Y(resp. Z) to give x * y. If $x \in Y - (Y \cap Z)$ and $y \in Z - (Y \cap Z)$, put $x * y = (0 *_Y x) *_Z y$ and $y *_X = y *_Z (0 *_Y x)$, where $*_Y$ and $*_Z$ denote the operations in Y and Z, respectively. Then $Y \cup Z$ is a weakly associative BCI-algebra, and $Q(Y \cup Z) = Y$, $L(Y \cup Z) = Z$ and $A(Y \cup Z) = A(Y) = A(Z) = Y \cap Z$.

PROOF. To show that $Y \cup Z$ is a BCI-algebra. By Lemma 12, we only need to verify by Lemma 12 that $Y \cup Z$ satisfies (I), (IV) and (1). But by routine calculations we know that $Y \cup Z$ satisfies (I), (IV) and (2). Thus $Y \cup Z$ is a BCI-algebra. Next we show that $Y \cup Z$ is weakly associative. For all $x \in Y \cup Z$, if $x \in Y$, then 0*x = 0*y x = 0*y (0*y x) = 0*(0*x);

if $x \in Z$ then $0 * (0 * x) = 0 *_Z (0 *_Z x) = x$. Thus $Y \cup Z$ is a weakly associative BCI-algebra. Obviously $Q(Y \cup Z) = Y$, $L(Y \cup Z) = Z$ and $A(Y \cup Z) = A(Y) = A(Z) = Y \cap Z$. \square

EXAMPLE 14. Let $Y = \{0, 1, a, b\}$ and $Z = \{0, a, x, y, u, v\}$ with Cayley tables as follows:

					* Z	0	a	\boldsymbol{x}	y	u	v
					0	0	a	y	\boldsymbol{x}	v	u
* _Y	0	1	a	b	a	$0 \\ a$	0	v	u	y	\boldsymbol{x}
0	0	0	a	a	x	x	u	0	y	a	v
1	1	0	b	a	y	y	v	\boldsymbol{x}	0	u	a
a	a	\boldsymbol{a}	0	0	u	u	\boldsymbol{x}	a	v	0	y
\boldsymbol{b}	b	a	1	0	v	v	y	u	a	\boldsymbol{x}	0

By routine calculations we know that Y is a quasi-associative BCI-algebra and Z is a p-semisimple BCI-algebra, and $A(Y) = A(Z) = Y \cap Z = \{0, a\}$. By Theorem 13 we know that the associative union $Y \cup Z$ of Y and Z is a weakly associative BCI-algebra with Cayley table as follows:

*	0	1	а	b	\boldsymbol{x}	y	\underline{u}	v
0		0	a	a	y	x	v	u
1	1	0	b	a	y	\boldsymbol{x}	v	u
a	a	a	0	0	v	u	y	\boldsymbol{x}
b	b	a	1	0	v	u	y	\boldsymbol{x}
\boldsymbol{x}	x	\boldsymbol{x}	u	u	0	y	a	v
y	y	y	v	v	\boldsymbol{x}	0	u	a
u	u	u	\boldsymbol{x}	\boldsymbol{x}	a		0	y
v	v	v	y	y	u	a	\boldsymbol{x}	0

DEFINITION 2. In Theorem 13, $Y \cup Z$ is called an associative union of a quasi-associative BCI-algebra Y and a p-semisimple BCI-algebra Z, or an associative union of Y and Z (for short).

THEOREM 15. Let X be a BCI-algebra. Then X is weakly associative if and only if X is an associative union of a quasi-associative BCI-algebra and a p-semisimple BCI-algebra.

The following example shows that a BCI-algebra may not be weakly associative.

EXAMPLE 16. Let $X = \{0, 1, a, b, c, d\}$. The binary operation * on X is defined as follows:

*	0	1	a	b	c	d
0	0 1 a b c	0	c	c	\overline{a}	\overline{a}
1	1	0	d	c	b	C !,
a	a	a	0	0	c	C.
b	b	a	1	0	d	C
c	c	c	a	a	0	()
d	d	c	b	a	1	(

By routine calculations we know that X is a BCI-algebra, and $Q(X) = B(X) = \{0,1\}$, $P(X) = \{a,c\}$. Hence $X \neq Q(X) \cup P(X)$, and so X is not weakly associative.

References

- 1. Q. P. Hu and K. Iséki, On BCI-algebras satisfying (x * y) * z = x * (y * z), Math. Seminar Notes (presently, Kobe J. Math.) 8 (1980), 553-555.
- W. Huang, On the p-semisimple part in BCI-algebras, Math. Japon. 37 (1992), 159-161.
- 3. K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
- T. D. Lei and C. C. Xi, p-radicals in BCI-algebras, Math. Japon. 30 (1985), 511-517.
- 5. H. S. Li, An axiom system of BCI-algebras, Math. Japon. 30 (1985), 351-366.
- Y. L. Liu, Some results on p-semisimple BCI-algebras, Math. Japon. 37 (1992), 79-81.
- 7. J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co. Seoul, Korea (1994).
- 8. J. Meng, S. M. Wei and Y. B. Jun, Characterizations on KL-product BCI-algebras, Pusan Kyongnam Math. J. 8 (1992), 49-53.
- 9. J. Meng and X. L. Xin, Characterizations of atoms in BCI-algebras, Math. Japon. 37 (1992), 359-361.
- 10. _____, Commutative BCI-algebras, Math. Japon. 37 (1992), 569-572.

- 11. _____, A problem in BCI-algebras, Math. Japon. 38 (1993), 723-725.
- 12. Y. Q. Wang, Isomorphic theorems on X/Q(X), Math. Japon. 37 (1992), 341-347.
- 13. C. C. Xi, On a class of BCI-algebras, Math. Japon. 35 (1990), 13-17.

Y. Q. Wang Shanghai Spare-Time University of Yangpu District 1130 Kongjiang Road Shanghai 200093, P. R. China

S. M. Wei Institute of Mathematics Huaibei Coal Mining Teacher's College Huaibei 235000, P. R. China

Y. B. Jun Department of Mathematics Education and Research Institute of Natural Science Gyeongsang National University Chinju 660-701, Korea E-mail address: ybjun@nongae.gsnu.ac.kr