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CODE AUTOMORPHISM GROUP
ALGORITHMS AND APPLICATIONS

HaAN Hyuk CHO*, HYE SUN SHIN AND TAE KYUNG YEO

ABSTRACT. We investigate how the code automorphism groups can be
used to study such combinatorial objects as codes, finite projective
planes and Hadamard matrices. For this purpose, we write down a
computer program for computing code automorphisms in PASCAL lan-
guage. Then we study the combinatorial properties using those code
automorphism group algorithms and the relationship between combina-
torial objects and codes.

1. Introduction

There are many kinds of automorphism groups in mathematics. Amo
ng them such automorphism groups as code automorphisms, disign au-
tomorphisms and graph automorphisms are important to combinatorics.
These automorphism groups play a key role in determining the corre-
sponding structure, and provide a playground to study elementary alge-
bra and geometry (group actions, projective transformations, etc.). In
particular, code automorphism group is useful in determining the struc-
ture of codes, computing weight distributions, classfying codes, and de-
vising decoding algorithms, and many kinds of code automorphism group
algorithms were developed [4-6]. In this paper, we will investigate how
the code automorphism group can be used to study some combinatorial
structures. For this purpose, we compute the automorphism group of a
given code using the computer programs written in PASCAL language
[12]. Using these computational results, we can derive the structure of
some combinatorial objects.

Received December 30, 1995. Revised April 20, 1996.

1991 AMS Subject Classification: 05, 15, 94.

Key words and phrases: code, code automorphism group, finite projective plane,
Hadamard matrix.

*Partially supported by the Korea Research Foundation.



576 Han Hyuk Cho, Hye Sun Shin and Tae Kiyung Yeo

2. Codes and code automorphism groups

Let F be a finite field GF(q). Any subset C of F" is called an g-ary
code, and each element in C is a codeword of ¢'. If C is a subspace
of F", then C is called a linear code 19]. In this section, we introduce
basic definitions related to code automorphism group algorithms, and
introduce some computations to find the weight distributions of a code
using its automorphism group.

DEFINITION 2.1. Let C be a binary code of length n. The binary
code of length n + 1 obtained from C by adding parity check bit is called
the extended code of C. The permutations of coordinate places which
send C into itself form the code automorphism group of C denoted by
Aut(C') (codewords go into possibly different codewords). Two binary
codes 'y and C; are equivalent if there is a permutation of coordinate
places which sends C onto C,. If C € GF(g)" is a nonbinary code,
Aut(C) consists of all n x n monomial matrices A sver GF {q) such that
vAe Cforallve(.

Note that if two binary codes C; and C; are equivalent, then Aut(Cy)
and Aut(Cy) are isomorphic. But the converse may not always hold. Let
C be a binary code and H be a subgroup of Auti C'). For a codeword
v € C, the number of 1’s in the coordinate places of v is the weight of
v. Usually 4; denotes the total number of codewords in C of weight ¢
and is denoted by wt(v), and A;(H) the number of codewords which are
fixed by some element of H. Now, we will investigate a method of using
the automorphism group to find out the weight distribution of a given
code C. The following theorem is a known one, bt we give a proof to

explain the computations.

THEOREM 2.2, Let C be a binary code and H be a subgroup of
Aut(C). Then, A, = A;(H) (mod |H|). where |H| denotes the cardinal-
ity of H.

PROOF. The codewords of weight ¢ can be divided into two classes,
those fixed by some element of H, and the rest. f v € C is not fixed
by any element of H, then the |H| codewords gv for ¢ € H must all be
distinct. Thus A, — A;(H) is a multiple of |H|.
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DEFINITION 2.3. Let C be a binary code of length n and G is a sub-
group of Aut(C). Then G acts on the coordinate places @ = {1,2,--- ,n}.
A subset {c;, - ,ck} of  is called a coordinate base for G provided
that the identity element fixes all the coordinate places c;’s (i.e. stabi-
lizer G, .. . = identity). A strong generators for G on Q relative to
the ordered coordinate base {c1, -+ ,c;} is a generating set S for G such

that G, ... ., is generated by SN Geypoooy for g ==1,--- k.
Let G7 = Geypoor, G =G and A =[GV Gllforj =1, k.
Note that |Aut(C)| = H;zl A; when G = Aut(C).

CoMPUTATION 2.4. Consider the (7,4,3) Hamming code C. The
Aut(C') determind by the computer algorithms is given as follows;

1 0000 11

0 100 1 01
MInput: |5 5 7 g 11 0

0 001 111
(2) Output : 1) Coordinate base ; 1,2,3,4.

2) Strong generators ;

s1 = (45)(67), s2 = (46)(57), s3 = (23)(67)
ss = (24)(35), s5 = (12)(56).

It follows that Aut(Cy) =< s1,89,383,84,85 > and |Aut(Cy)] = 2% x 3 x
7 = 168. For a prime p dividing |Aut(C)|, let H be a maximal subgroup
of Aut(C') whose order is a power of p (i.e. H is a Sylow p-subgroup of
Aut(C)). If g € H fixes v € C, the stabilizer H, of v forms a subgroup
of H. Thus |H,] 1 |H|. On the other hand, the number of permutation
which fixes the codeword with weight ¢ is i{(n —1¢)!. Hence if 4;(H) # 0,
then |H,| | t!(n — 1)l. Therefore, if |H,| { t!(n - ¢)!, then A;(H) = 0.
thus 4;, =0 (mod |H|).

Note that the minimum weight of C' is 3 (43 # 0). Thus the number
of permutation which fixes the codeword of weight 3 is 3!(7 — 3)!. Let
H be a Sylow T7-subgroup of Aut(C). Then |H|= 71 3!4!. Thus 4; =0
(mod 7). Since C is self-orthogonal, A, is nonzero. By the same method,
Ay = 0 (mod 7). Since the total number of codeword is 2* = 16, the
weight distribution of Hamming code is A3 = 44 =7, Ag = A7 = 1. By
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the same method the weight distribution of (8,4,4) extended Hamming
code can be found as follows; 4y = 4; = 1, Ay = 14

CoMPUTATION 2.5. Consider (24,12,8) Golay code C. The Aut(C)
determind by the computer algorithm is given as follows:

(1) Input : (24, 12, 8) Golay code [7, page 63]

(2) Output :

1) Coordinate base ; 1,2,3,4,5,6.7.8,9 10,11, 12.
2) Strong generators ; s, Sq, 83, S4. 85, 8¢, S7, Sg.

It follows from the output that Aut(C) =< 81,82. 83,84, S5, Sg, 87, Sg >,
and Aut(C)=3x16x20x21 x22x23 x24 = 219 x 33 x5 x 7 x 11 x 23.
In fact, it is known that the automorphism group of Golay code is equal
to the much larger Mathieu group Mo, and is a 5-fold transitive group.
Since Golay code is self-dual and doubly even, A; is nonzero for : = 0, 8,
12,16, 24. Let H be a Sylow 23-subgroup of C'. Note that the number
of permutation which fixes the codeword with weight 8 is 8'16!, and
23 1 8116!. Thus Ay = A;5 = 0 (mod 23). By th: same way, A,y = 0
(mod 23) since 234 12!12!. Therefore, the weight distribution of Golay
codeis Ag = Ay =1, Ag = Ay = 23m, Ay = 23n (m n € Z). Infact,
1t is known that As = A = 759 = 23 x 33, A;, = 2576 = 23 x 112.
For (23,12,7) Golay code that is a punctured code of (24,12,8) code,
there exist A; for 7 = 0, 7, 8, 11, 12, 15, 16, 23. By the same method,
Vi (i # 0,23), A; = 0 (mod 23). Finally, we give a complete description
of s;’s as follows;

s1=(71411)(81619)(9 1320)(10 15 12)(17 21 23)
s =(67)(812)(915)(1023)(1114)(1321)(16 20)(
s3 = (68)(712)(910)(1113)(1421)(1523)(16 1D)(
84 = (56)(819)(918)(1012)(1114)(13 24)(1723)(
S5 = (45)(79 )(1012)(1113)(1420)(16 19)(1721)(
s¢ = (34)(

= (23)(

Z( 2)(

Note that if we can find a subgroup H of Aut(C) satisfying A; =
0(mod |H]), the weight distribution of C can be determined exactly by

2
710)(816)(920)(1115)(12 14)(17 21 ( 1824),
819)(913)(1023)(1114)(1217)(1521)(1
823)(1012)(1114)(1320)(16 21)(17 L9)(
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Chinese Remainder theorem. In general, Theorem 2.2 is often proper
enough to determine A; exactly when |Aut(C)| is large. Computation
2.4, 2.5 are the cases when there exists a subgroup with large prime order.
Then how can Theorem 2.2 be used if there is no such a subgroup?

3. Projective planes and Hadamard matrices

In this section, we introduce incidence matrices of finite projective
planes and Hadamard matrices. Then we investigate the codes generated
by the incidence matrices and Hadamard matrices.

DEFINITION 3.1. A t-(v,k, A) design consists of a set of v points and
a set of b blocks satisfying the following;

(1) Each block has k points.

(2) Every t points lie on exactly A blocks.
A bxwv (0,1)-matrix A = [a;;] satisfying a;; = 1 iff the j-th point is in the
i-th block is called an incidence matrix of the design. A 2-(v,m + 1,1)
design with v = b, denoted by PG(2,m), is called a projective plane
of order m. In design, an automorphism is a permutation of its points
which preserves the block set.

For all m equal to the power of a prime number, finite projective
planes of order m can be constructed [3]. No planes have as yet been
constructed for any other orders, but they are known to be impossible
for infinitely many values of m. In 1989, it was shown that there is no
projective plane of order 10 using sophisticated computer calculations.
For a p-ary code in GF(p), it is worth investigating the variation of
the dimension and automorphism group of C according to changing of
p. In fact, the some relations between design and p-rank are known
[11]. It is also known that an incidence matrix of PG(2,m) generates a
self-orthogonal code.

THEOREM 3.2. Let A be an incidence matrix of PG(2.m) and C be
a binary code of length n generated by the rows of A. If m is even, then

Aut(C) = Aut(PG(2,m)). If m is odd, then |Aut(C)| = nl.

PROOF. Note that n = m? + m+ 1 and A is an n x n matrix. First,
let m be even. We claim that every codeword having minimum weight in
C is a line vector in PG(2,m). Let v € C be a nonzero codeword having
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the minimum weight d. Note that every line cortains odd number of
points and has a 1 as overall parity check. Thus if d is odd then v
and each line vector have a positive common position. If d is even then
v and every line vector having 1 in a fixed positive position of v have
another positive common position. Therefore if d s even, then we have
d>m+1. Alsoifdis odd, then we have (m + Hed>m?4+m+1 (1.e.
d > m + 1). Therefore the minimum weight is m + 1. Now let v € ('
be a nonzero codeword with wt(v) = m + 1. Then there is a line vector
! of PG(2,m) which has at least three common positive positions with
v. If there is a positive position of ! not on v, every other line vector
having 1 at that position has a common positive position with v since v
and every line vector have at least one common positive position. This
would yield wit(v) > m + 3. This is a contradiction. Therefore every
vector of minimum weight in C' is a line vector in PG(2,m). Therefore
every projective automorphism is a code automorphism and vice versa
when m is even.

Next, let m be odd. If we take the sum of the rows of 4 which have
a 1 in a fixed column position, the result is a vector with a 0 in that
position and 1's elsewhere. Thus C is the code gencrated by the rows of
the following n x n matrix

0 1 ... ... .1
1 0 1 1
1 1 0 1 1
B =
1 1
1 1 0,

Here the sum of all the rows of B is 0 because m 's odd. But the sum
of all the rows of B except the last row gives a nonzero vector. Thus
rank B = dim C = m? + m. Now, consider the minamum weight d of C.
Suppose C'is a (n,k,d) code with d > 3, where k = m? + m. Then

G) e (3)) ==

b 2 2
(m?® 4 m +2).2m tm L gmiAmtl

i.e.
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A contradiction since m > 1. Thus the minimum weight of C is 2.
Therefore if m is odd, the vectors of C' generate the subspace of GF (2)"
consisting of all words of even weight. Hence, we conclude |Aut(C)| = n!.

COMPUTATION 3.3. Let D be an incidence matrix of PG(2,2). Note
that PG(2,2) contains 7 points and 7 lines, and the code C' generated by
D, has h(z) = 14 z + 2* as generator polynomial. Using the computer
algorithm, we compute Aut(C) as follows.

1101000

0110100

0 011 010
()Input: {0 0 0 1 1 0 1

1 0001 10

0100 011

1 010001
(2) Output :

1) Coordinate base ; 1,2, 3, 4.
2) Strong generators ;

s1=(35)(67), 2 = (36)(57),
83 — (23)(47), 84 = (12)(57)

It follows from the output that Aut(C) =< s1, 2,353, 54 > and |Aut(C)|
=4 x6x7=168.

COMPUTATION 3.4. Let D, be an incidence matrix of PG(2,3) (we
omit the description of D,). Note that PG(2,3) contains 13(= 3% +
3 + 1) points and 13 lines. It follows that the code C generated by D,
has h(z) = = + 2% + ... + 2'? as generator polynomial, and consists
of all codewords of even weight of length 13, and |Aut(C)| = 13! by
Theorem 3.2. We can verify our conjecture by the program, and the
result is Aut(C') =< s1,89,--+ ,s19 > and [Aut(C)| = 13!. In PG(2,m),
if we choose a stabilizer of a given line, it is equivalent to an another
stabilizer of a different line because an automorphism sends a line to an
another line. So, stabilizers of all lines must be intersect with the Affine
group which always invariants the infinite line, i.e. H N ATL(2,m) =
0 implies A;(H) = 0.
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DEFINITION 3.5. A Hadamard matriz H of order n is an n xn matrix
of +1’s and —1's such that HHT = HTH = nI. Hadamard matrix is
a normalized Hadamard matrix in the sense that all entries in the first
row and column are +1. Two Hadamard matrices are called equivalent
if one can be obtained from other by permuting rows and columnns and
multiplying rows and columns by —1.

For an n x n Hadamard matrix, n is necessarily 1, 2, or a multiple
of 4. And it is conjectured that Hadamard matrices exist whenever the
order is a multiple of 4. But the conjecture has not yet been proved. We
see there is only one equivalence class of Hadamard matrices of orders 1,
2, and 4, and there is only one class of order 8 and one class of order 12.
But there are five classes of order 16, and 3 of order 20 [7]. Let H be a
4m x 4m Hadamard matrix, and N(H ) be the ma:rix obtained from H
by deleting the first row and column. Now, let 4y and ANy be the
matrices obtained from H and N(H) respectively oy replacing —1 with
0. Let Cy and Cn(g) be the binary codes generated by the rows of Ay
and A (g respectively.

THEOREM 3.6. Let H be a 4m x 4m normalized Hadamard matrix,
and m be an even integer. Then Cy; is the extened code of CniHy-

PROOF. Let E be the extened code of Cn(ny- Note that Ay,
Is an incidence matrix of a 2 — (4m — 1,2m — 1. m — 1) design with
v =b=4m — 1. Note that the number of 1's in cach row of ANl 18
also m — 1 since A (y) is an incidence matrix and v = b. Also the sum
of all rows of Ax () is an all one vector since m - 1 is an odd integer.
Thus all one vector of length 4m is in F, and the length 4m vector (1,
each row of Ay(p)) is also in E. Note that those vestors generate E (i.e.
the rows of Ay generates E), and each row of Ay is an element of E.
Therefore Cy is the extened code of C N(H)-

By Theorem 3.6, we can introduce the (7,4,3) Hamming code and
its extended code using 8 x 8 Hadamard matrix as follows. Note that
inequivalent Hadamard matrices can generate equivalent codes. The
codes generated by 59 inequivalent 24 x 24 Hademard matrices were
investigated and there appear to be only nine inequivalent codes (two
with minimum weight 9 and seven with minimum weight 6) [6].
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COMPUTATION 3.7. Starting with S; = (1), this gives S;, Sy, Ss, .. .,

as follows;
S, Sn
SQTL - (Sn _Sn) .

For each n, S;, is a normalized Hadamard matrix of order 2n. For a
prime number p with p = 3 (mod 4), consider a p x p matrix @ = (gi;)
whose rows and columns are labeled 0,1, - ,p — 1, and ¢;; = x(j — ?).

Let
11
P:PP“:(N Q~I>'

Then PPT = PTP = (p+1)I,4; holds, and P(= P,4;) is a normalized
Hadamard matrix of order p + 1. Note that Sg and Pg are equivalent.

Now let Ay(s), An(p) be the matrices obtained by deleting the first
row and column of § = Sg and P = P; respectively, and replacing —1 by
0 throughout. Also let Cn sy, Cn(p) be the codes generated by the rows
of An(s), An(p), respectively. Then Cys) is exactly equal to the (7,4,3)
Hamming code and C’s is its extended code. Also Cy(py is exactly equal
to the codes having h(z) = 1 + z + z* as generator polynomial.
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