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C!-BICUBIC SPLINE INTERPOLANT
ON AN IRREGULAR MESH

BYEONG CHUN SHIN

ABSTRACT. In the course of working on the preconditioning of C1-
bicubic collocation method, one has to deal with the C-bicubic splines.
In this paper we are concerned with C-bicubic spline interpolant for a
given function. We construct a basis for the space of C-bicubic splines
for a given partition and find the C'-bicubic spline interpolant for a
given function defined on a set.

1. Introduction

Let I = [0, 1] be the unit interval and let 2 = I x I be the unit square.
Define A’ as a partition of I for ¢-directions(t = « or y) such as

(1.1) Al s 0=tg<ti<---<ty=1, hi=t;—t;

where N is a positive integer. Let A := A? for the one dimensional case

and let Q;; = [z;_1,2;] x [y;j—1,y;] be a partition 7 := A% x AY of Q.
Define the space S* of C1—cubic splines for a partition A? as

(1.2)

St={feCl(I): Fliti—y ] s polynomial of degree <3, i =1,---,N}.

Define the space S™ of C'-bicubic splines for the partition 7 as
(1.3)

ST = {Z cj fi(z) g;(y) : f; € S, g; € SY, ¢;'s are real numbers }.
J
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Let {¢; 12-50'*'1 be a set of numbers satisfying

(1.4) & =0, tis1<f-1<€i<ty, bnpa=1, i=1,--,N.

In this paper we will construct the interpolatory basis {$:} 200+ for

S* satisfying
(1.5) bi(€r) = i, 1,k=0,1,-- 2N +1.

The existence and uniqueness of {¢;}2;t? can be checked by using
Schoenberg-Whitney conditions (see [5],[6],(7]). We extend the results to
the space S™ of C''-bicubic splines generated by ¢; ¥, =0,1,--- ,2N+
1,7 =0,1,--+ ,2M +1 where ¢, and ¢, are the interpolatory basis func-
tions of S* and SY respectively.

For a given function g defined on aset {(¢;,n;) € 2:4=0,1,--- ,2N+
1, 7=0,1,---,2M + 1} and a partition 7 such that ¢'s and n;'s sat-
isfy (1.4) for z and y-directions, respectively, g has the unique C*'-bicubic
spline interpolant on S™.

We will discuss these splines on a uniform mesh and give some com-
putational experiments with figures in section 4.

2. Some estimates for C'-cubic spline

LAMMA 2.1. Let f be a cubic polynomial on [0, h] vanishing at p and
g where 0 < p < ¢ < h and p # q. Then there is a matrix M|[p, q, h] such
that

7 | = £(0) |
where
(2.2a)
M(p,q,h](1,1) =1+ lete) gjéfz - ¢? +pq),
(2.2b)
g Rt
M[p1Qah](1,2) =h+ ” ,
(2.2¢)

3h*(p + q) — 2h(p® + ¢* + pg)
p?q®

M(p,q,h)(2,1) =
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and

3h? —2h(p +q)

(2.2d) Mlp,q,h)(2,2) =1+ =

PROOF. Let f(t) = at® + bt2 + ct + d,a # 0 . Then we have
(2.3) f(0)=d and f'(0)=c.
Since f(p) = f(q) = 0, we have

(2.4a) ap® +bp* + f'(0)p+ f(0) =0,
(2.4b) ag’ + bg* + f'(0)g + £(0) = 0.

Hence we have a matrix form

e [p g G- -0 [P

Then we have

(2.6) [Z} " p21q2 [—(132 i:2q+ Pq) —pqg’q+ Q)} [J{' ((%))] '
Note that

(2.7a) f(h) = ah® + bh* + f'(0)h + £(0),

(2.7b) f'(R) = 3ah? + 2bh + f'(0).

Therefore we have
eo [0]- (5 510 ) e

Substituting (2.6) to (2.8), we have the conclusiorn.



528 Byeong Chun Shin

COROLLARY 2.1. Under the assumption of Lemma 2.1, the function
f is represented as

(2.9) f(t) = at® + 5% + f'(0)t + £(0), te€[0,h]
with
(2.10) m = Dip,q] [ ]{((%))]
where
N p+gq Pq
(2:11) Dlp.gl == p*q? [—(p+q)2+pq --pq(p+Q)]'

By changing (2.4a) in Lemma 2.1 as
(2.12) ap® +bp® + f'(0)p + f(0) = 1

and simply repeating some modifications of the arguments in Lemma
2.1, we have the following lemma and corollary:

LEMMA 2.2. Let f be a cubic polynomial on [0, h| satisfying f(p) =1
and f(q) =0 where 0 < p < ¢ < h and p # q. Ther. we have

o [f] - e 48]+ i (353)

COROLLARY 2.2. Under the assumption of Lemma 2.2, the function
f is represented as

(2.14) f(t) = at® +bt% + f/(0)t + f(0), ¢€]0,h]

with

[ - 0w 0]+ g L)
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REMARK. If p + ¢ = h, then M|p,q,h] in Lemma 2.1 is a positive
matrix such that

h2
14+ — h
_ Pq
(2'16) M[P, q, h] - h3 + 2hpq h2
_2 5 1 —
pq pPq
and
, h?
(217)  Mlp,g,hl(L1) = Mlp g, h(2,2) =1+ — > 5.

The positivity of M|[p, ¢, h] and (2.17) play an important role in an ex-
ponential decay for the C!-cubic interpolatory splines (see [6],[7]).

3. C!-bicubic spline interpolant
Consider the interpolatory basis {¢;}2:! for S* satisfying
(3.1) $i(&;) = b5, 1,7=0,1,--- 2N +1

where a set {¢; ?270“ is given in section 1.
For convenience, we denote hy = h} for 1D case. Assume that for

i=1,2- N
(3.2) §oic1=tii+pi and &=t +q

where 0 < p; < q; < h;.
LEMMA 3.1. Let {¢;}2Y*! be the interpolatory basis for S'. For

,k=1,2,--- | N, we have the following recursive relations :
do(te) ] [ ¢0(tk—1)]
3.3 —= Mlps, qx, h ,
( ) |:¢6(tk)_ [pkana k] _¢{)(tk—1)
dan+1(tr) | [ ¢2N+1(tk—1)]
3'4 - M ) ’h K
o0 [Gren] = Mpwana |GG
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(3.5)

0] = Mg [ G0 4 s [ ]
55)

] = Meeana [200] + 2ot [0

PROOF. For the case ¢; (I = 2j — 1), using the restriction and trans-
lation, we define ¢;; on [0, h] as follow:

(3.7) Sri(t) = di(te—1 +1t), k=12, N.

Then we have, for k =1,2,--- N — 1,

(3.8)  uk(hr) = ¢i(tk) = d1,6+1(0), 61 x(hi) = ¢1(tr) = 87 £41(0),

Moreover, from (3.1), we have for j,k =1,2,--- | N,

(3.9) S1k(pr) = di(lar—1) = 65k, 1 k(gr) = d1(€2x) = 0.

Applying (3.8) and (3.9) to Lemma 2.1, 2.2, (3.5) follows. Similarly
we will prove the other cases.

By Lemma 3.1, we can derive the 2N + 2 second order linear systems
for two linear equations:

(3.10)
PORELE w0l | ()] = 701 | ()]

and for j =1,2,--- ,N
(3.11)
1

[¢'2,-_01(1)] = MV [as;j_Ol(O)] 7 =g s8]
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(3.12)
[ 0 ] = M) [ ,° ] b MIN,j+1] [ -
¢2j(1) ¢2j(0) Qj(Qj - pj) 3—2p;

where M[N,k] =0, k > N and
(3.13)
M[N,k] = M[pn,qn, hnIM[pN-1,9N-1,hn—1] - -+ M[pr,qk, hi], & < N.

First, from these systems we find ¢:(0) and ¢;(1) and then using Lemma
3.1, find ¢;(¢x) and ¢i(tx) fore =0,1,--- ,2N+1. k=0,1,--- ,N. Now,
by Corollary 2.1, 2.2, we have the following lemma:

LEMMA 3.2. On each subinterval [tx_1,tx}, k = 1,2,--- , N, we have
the following representation for ¢;, ¢ = 0,1,--- ,2N 41,

(3.14) (1) = ai(t — tx—1)® + bi(t — tk—1)® + @i(tk—1)t + ¢i(tk—1)
with

i il tp—
(3.15) o] = Pt [G5] + &
where
4 1 1 i
Y Y [ } for 1=2k-1,
Pi(Px —ax) [ —ax
3.16 R; := 1
( ) ) 2; [ ] for 1 =2k,
ax(qk —px) | —pr
L 0 otherwise.

By applying Lemma 3.1 and 3.2 to two dimensional case, we have the
following theorem :

THEOREM 3.1. Given a function g defined on a set {(§i,n;) € Q:1 =
0,1,---,2N +1, j;=0,1,---,2M + 1} and a partition 7 := A* x AY
that satisfies
(3.17)

0<ri1 <€i-1<€pi<z; <1, 1=1,2,---,N,

(3.18)
0<yj—1 <mgj-1<m<y; <1, 57=12,--- M
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and
(3.19)
(%o, y0) = (€0,m0) = (0,0), (zn,ym) = (€ant1,m2m41) = (1,1),

g has the unique C-bicubic spline interpolant s € S™ such that

2N+1 2M+1
(320) s(z,y)= D> > g(bimy) dilz) $i(y) for (z,y) € Q.
=0 3=0

where {QS,-}Q]O“ and {1/13-}?__%“ are the base of S* and SY, respectively,
satisfying

(3.21) ¢i(€x) = bix  and () = 6.

4. Cl-bicubic splines on uniform mesh

In this section we consider C!-cubic splines for the partition A =
{t:}X, such that ty = k h ,k = 0,1, -- , N wherec h = 1/N. Assume
that for: =1,2,-, N,
(4.1) §2i-1=tic1+p and &=t tg
where 0 < p<g<handp+q=h.

Define two matrices M; = M|p, g, h] and D, = D[p, q]. Let {qs,-}fjo“
be the interpolatory basis for S* satisfying

¢i(€x) = dix, 1,k=0,1,--- ,2N 4 1.
THEOREM 4.1. For k =0,1,--- ,N, we have

(4.2) P2k(t) = don—k)+1(1 —t) for te L
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PROOF. Define f(t) = don—k)+1(1 —t) for t € I. Since p+ ¢ = h,
we can easily check that

(4.3) &i=1-&N—iy1, t=0,1,--- 2N+ 1.
So f is a C'-cubic spline satisfying
(4.4) f(€2x) =1 and f(&;)=0 forallj # 2k.

By the uniqueness of @k, f coincides with ¢o;. Therefore we have the
conclusion.

Now we need to determine (N + 1) basis functions ¢1, ¢3, - , pan+1
for S
From Lemma 3.1 and (3.10)-(3.12), we have the following recursive re-
lations for: =1,2,--- ,N+1,k=1,2,--- | N,

(4.5) [¢2i~—1(tk):' _ M, [¢2,-_1(tk_1)] k<

¢;i—1(tk) ¢'2i—1(tk—l)
and
aic1(te) | _ 1 | $2i—1{tk41) :
SR bt RCCoal bt o] HEL
with ¢5;_,(0) and ¢5,_,(1) satisfying
(4.7)
$2i-1(1) | _ N 0 1 N-i| 1=q | .
[qs'z,-_l(l)} = (M) [cb;,-_l(m]*p‘—z(p—q)(M*) [3—qu i #nt

where ¢on41(1) = 1 and ¢2,-1(1) =0 (2 # n + 1). And on each subin-
terval [tg_1,tk], $2:—1 is represented as

(4.8)

$2i—1(t) = agi—1(t—tx—1)* +boic1(t—tr—1)? + oy (bk—1)t + d2iz1(tk—1)

with

(4.9) [“2"—1] - D, [¢2i—1(tk—1)] +ﬂ_ [ 1 ]

b2i—1 b9i_1(tk—1) PP(p-q) | —¢
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EXAMPLE. Using two Legendre-Gauss points
(4.10) h(l —) d (1 + ! i on [0, hA]
. =—(1- an — — ,hl,
P=3 \/_ = V3
we compute

(4.11) M, = [

<[5~
-
—

)

]

[o

o

-

i
S
r—————
& o
el

|
o>~

)
| SN |

and forz=1,2,--- , N,

6[(10 + 5v3)A + (2 — V3 )A"N"]

(4.12) $9i-1(0) = R(1— AZF)
N1 — N—i
13) (1) = 6(10 + 5\/')h>E1 i ;](VZ) V3)A ]’
(4.14)
/\N
pan+1(0) = (8\/—/\2N)

and

2N
(415)  dhwn(1) = %

where A = 7 — 4v/3. Then from (4.5),(4.6) and (4.8), we can find the
basis functions {¢;}22" for St. Let S™ be the space of C'-bicubic
splines generated by ¢i(z)¢;(y), ¢,7 =0,1,--- ,2N + 1.

For one dimensional case, we show the figures of two basis functions
é¢s (N = 4) and ¢10 (N = 8) for S* in Figure 1 and the figures of
two C'-cubic spline interpolants s¢(t) and s,4(t) for f(t) = sin(3nt) and
g(t) = cos(27t), respectively, in Figure 2,3 when N = 1,2,4,8.

For two dimensional case, we show the figures of two basis func-
tion ¢s(z)¢s(y) (N = 4) and ¢10(z)d10(y) (N = 8) for S in Figure
4 and the figures of C!-bicubic spline interpolant s(z,y) for G(z,y) =
sin(3mz) cos(27y) in Figure 5,6 when N =1,2,4,8.
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Figure 1. The basis functions ¢s (N = 4) and ¢10 (N = 8).
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Figure 3. Cubic spline interpolants when N = 4, 8.
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Figure 5. Bicubic spline interpolant for G(z.y) when N = 1,2.
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