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MMPP,M/G/1 RETRIAL QUEUE WITH
TWO CLASSES OF CUSTOMERS

DoNGg HwaN HAN AND YONG WAN LEE*

ABSTRACT. We consider a retrial queue with two classes of customers
where arrivals of class 1 (resp. class 2) customers are MMPP and Poisson
process, respectively. In the case that arriving customers are blocked due
to the channel being busy, the class 1 customers are queued in priority
group and are served as soon as the channel is free, whereas the class
2 customers enter the retrial group in order to try service again after a
random amount of time. We consider the following retrial rate control
policy, which reduces their retrial rate as more custemers join the retrial
group; their retrial times are inversely proportional to the number of
customers in the retrial group. We find the joint generating function
of the numbers of customers in the two groups by the supplementary
variable method.

1. Introduction

Retrial queueing systems are characterized by the feature that arrivals
who find the channel busy join the retrial group to try again for their
requests in the random order and at random intervals. Retrial queues
have been widely used to model many problems in telephone switch-
ing systems, computer and communication systers. For comprehensive
surveys of retrial queues, see Yang and Templeton[9] and Falin[5].

In this paper, we consider a retrial queue with two classes of customers
where arrivals of class 1 (resp. class 2) customers are MMPP(Markov
Modulated Poisson Process) and Poisson process, respectively. In the
case that arriving customers are blocked due to the channel being busy,
the class 1 customers are queued in priority group and are served as
soon as the channel is free, whereas the class 2 customers enter the
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retrial group in order to try service again after a random amount of
time. We assume the following retrial rate control policy, which re-
duces their retrial rate as more customers join the retrial group; their
retrial times are inversely proportional to the number of customers in
the retrial group. M/G/1 retrial queue with one class of customers and
MMPP,M/G/1 queue without retrial are special case of our model. Choi
et al.[3] calculated the Laplace-Stieltjes transform of the virtual waiting
time distribution and the generating function for the number of retrials
for ordinary M/G/1 retrial queue with one class of customers. Choi and
Han[1] obtained the joint generating function of the number of customers
in the two groups for ordinary MMPP, M/G/1 queue.

The main purpose of this paper is to find the joint generating function
of the numbers of customers in the two groups by the supplementary
variable method.

This paper is organized as follows. In section 2, we describe the
mathematical queueing model in detail. In section 3, we derive the joint
generating function of the numbers of customers in the two groups by
the supplementary variable method. In section 4, special case is treated.
As the rate of exponential retrial time tends to infinite, queue length
distribution for queueing system with retrial will approach to that for
queueing system without retrial. We show that the above facts hold for
MMPP,M/G/1 queue without retrial (Choi and Han[1]).

2. The model

We consider a single channel retrial queueing system with two classes
of customers, called class 1 (resp. class 2) customers. The arrival process
of class 1 customers is 2-state MMPP as follows. Let {J(¢), ¢t > 0} be an
underlying Markov chain on the state space £ = {1,2} with generator

[—71 N
Y2 72
a Poisson process with intensity a; (2 = 1,2). Class 2 customers arrive
according to a Poisson process with intensity 3.

If a class 2 customer upon arrival finds the channel free, he imme-
diately occupies the channel and leaves the system after service. If he
finds the channel busy on his arrival, he enters the retrial group in order

If J(t) = ¢, then class 1 customers arrive according to
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to seek service again after a random amount of time. He persists this
way until he succeeds the connection. The retrial time is exponentially
distributed with rate £, where n is the number of customers in the re-
trial group and is independent of all previous retrial times and all other
stochastic processes in the system. The class 1 customers are queued in
a priority group after blocked. As soon as the channel is free, a class 1
customer occupies the channel immediately, so class 2 customers in the
retrial group will be served only when there are no class 1 customers in
the priority group. According to the above rule class 1 customers in the
priority group have non-preemptive priority over class 2 customers.

The service times of both classes of customers are independent and
identically distributed with p.d.f. b(z) and mean b. Let

b(8) = /0 ~ e % b(z) dz

be the Laplace transform of the p.d.f. of the service time. It is easy to

show that the system is stable provided that p = 3’—:—;—1—;%\—2 b < 1, where

Ai = a; + . We consider only stable systems in this paper.

3. Joint probabilities of queue lengths

We will investigate the joint distribution of the queue lengths of both
classes of customers at departure points and at arbitrary time points
simultaneously by the supplementary variable method. Here we take
supplementary variable as the remaining service time.

At an arbitrary time, the steady state of the system can be charac-
terized by the following random variables;

J = the phase of underlying Markov chain,
N; = the number of class 1 customers in priority group
(excluding the customer in service),
N; = the number of class 2 customers in retrial group,

S = the remaining service time of the customer in service,

¢ = { 0, when channel is idle,

1, when channel is busy.
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Define the probabilities;

Q;=P[J:Z7N2=]7€=0]a
Pip(z)dz = P[J =i, Ny =j, Ny =k, § € (z,z + dz],¢ = 1],

and their Laplace transforms

ﬁamzl e=05pt (z) da.

Note that ﬁ;k(O) = P[J =1, Ny = j, Ny = k, £ = 1] is the steady state
probability that J = i and there are j customers in the priority group,
k customers in the retrial group and the channel is busy.

For simplicity of expression, we denote i’ = 3 — i throughout this
paper. Using a typical argument of the supplementary variable method,
we have the following system of differential difference equations; for i =
1,2,

(3.1a)
dPi (z) i i \ i
‘“‘_(c)lk;_ =—(Ai+ Yi)por(z) + ﬂpo,k—l(x,' + Yo pox ()
+b(2)[Pix(0) + vgiyy + Nigh], k >0,
(3.1b)
dpi'k(x) : N :
___de__ = — (A +7i)Pjr(z) + @ipj_y 1(z) + Bp} x4 (2)
+ 76 Pj(2) + (2Pl £(0), 2 1, k >0,
(3.2)

(Xi+ 7% +v)gh = vogh + pii(0), k>0,

where pj-,_l(z) = 0. By taking Laplace transforms of (3.1), it follows
that forz = 1,2,
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(3.3a)
(8 — Xi — %) Bor(60) + BPo x-1(6) + i Pag(6)
= ph(0) — B(8)[P1£(0) + vgitr + Xigi], £ 20,
(3.3b)
(6 — X — 1)k (0) + @Bl _y x(8) + B} 51 (8) + 7a By (6)
= pjx(0) — b(6)p’ 41 4(0), 7 =1, k>0.

For complex z; with |29| < 1, define the generating function;

Pi(6,22) =Y pix(8)25, i=1,2, 7 20,

k=0
Pi(zz) =Y pix(0)z5, i=1,2, j >0,
k=0
Qi(z2) = z:q}c zf, 1=1,2.
k=0

From equations (3.2), (3.3a) and (3.3b) we obtain, for ¢ = 1,2,

(3.4a)

(6 — X + Bz2) Pi(8, 22) + 7 5 (6, 22)
= Pi(z2) = K(O) | Pi(e2) + - (Qi(22) = 6)) + MQul=2)
(3.4b)

(86— X+ ﬁzg)ﬁ}(ﬂ,zg) + a,-P}__l(O, z2) + .71.,}3]?"(9, z9)

= Pi(z2) - 5(9)P;+1(Z2), 1=1,2, 721,

(3.5)
(M + 71)Qi(22) + ¥(Qi(22) — q§) = 7 Qur(22) + Py(z2).

Next we introduce the generating function of }3;(0, 23) and Pj(z2);

485
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o0
Pi(8, 21,29) = Zﬁ'}(ﬁ,zg)z{, i=1,2,

7=0
P,'(Z],Zz) = ZP}(Zz)Z{, 1= 1,2

5=0

Note that P;(0, z;, z3) = ElzM 2N g=4 ¢ = 1] is the joint generating
function of (N3, N;) when the channel is busy and the phase of under-
lying Markov chain is . From equation (3.4), we obtain, for i = 1,2,
(3.6) ) N

(6 — i(1 = 21) = B(1 = 2z2) — %) Pi(8, 21, 22) + 7o Py (8, 21, 22)

= ( - %‘f)) Pi(z1,22) + b(8) (————P"(S; #2) _ (5~ %)Q,-(zz) + ”7‘19) :
Let
(37) A(9,21,22)2(6—-01(1—21)—ﬁ(1—22)—’)’1)

(0 —az(l —21) =~ B(1 - 22) — 12) — M7

By solving simultaneous equation (3.6), we obtain our main result for

P;(8, 21, z3).

THEOREM 3.1. The solutions Py(6, 21, z3) of equations (3.6) are given
by

(3.8)
[{31(9, 21,22)} — [011(9, 31,22) 012(9,21,22)
P2(9,21,22) 4121(9, 21,22) 022(9,21,22)

PP1(21,22) Pi(0,22) (A1 + 7’;)@1(22) - iz‘!jz}
. o
| Pa(21,22) Pa(0,22) (D24 £)Qa(z) — 2o

- b(6)
1) R P S—
2 A(0, 21,22)

L ~5(6)
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where
a11(8,21,22) =0 — az(1 — z1) — B(1 — 22) — 72,
0,12(6, 21,22) = =72
a21(9721,22) = -7,
022(9,21,22) = 0 —_ a1(1 - 21) -— ﬂ(l — 22) —

In the remainder of this paper, we will express the functions P;(z1, 22),
Pi(0, z;) and Q,(22) explicitly in terms of known parameters (i = 1, 2).
To do this, we need the following lemma,;

LEMMA 3.2. Let A(f,z1,2;) be the function defined as (3.7). Then
for a fixed |z1| < 1 and |z2| < 1 except that z; = z; = 1, the following
equation in 6

(3.9) A(0,721,22) =0

has exactly two solutions in the region {6 | Ref > 0}.

Proor. Define

f(6,21,22) = (6 — (1 — 21) = B(1 — 22) — 1)
(6 -l —21) = f1 - 22) = )
9(67 21722) = Y172
and let C, be the contour which consists of the imaginary axis from —e?

to €i and the semicircle of radius € in the right half plane. Then for
e > max{a;,as} + 8 + 2max{y1,72}, we can easily deduce that

lf(9’217z2)| > lg(0721322)|a

on the contour C,. Therefore by Rouche’s theorem, A(6,z1,22) = 0
has exactly two solutions in the region {¢ |Re§ > 0}. O

REMARK. When z; = z3 = 1, the solutions of A(8,z1,22) = 0 are
9=0and9=7l +’)’2

Let 8;(z1,22),7 = 1,2, denote the two solutions of (3.9). Here we
assume that 6;(z1,22) # 62(z1,22). Since P1(9 z1,22) is analytic in the
region Red > 0, |z;] < 1, whenever the denominator of P1(0 21, 22)
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vanishes, the numerator must also vanish. Since the denominator of
Py (6, z1, z2) vanishes at 8;(z1,22), ¢ = 1,2, we have from equation (3.8)
the following two equations;

ai(z1, 22) {(1 - M)Pl(z 2) + b“’(‘:—’zmpl(o,@)

21

—b(6:(21,22)) (A1 )Q1(22) quo)}
3.10 %1, %2
( ) =, {(1 M)

P, (0,
- 2(0, 22)

22) L b b(9 (21, 22))
21

MOk 22 (O + 2)Quler) - )}
i=1,2,
where a;(z1,22) = 0i(21,22) — az(1 — 21) — B(1 — z3) — 72.

From equation (3.10), we have the functions Fi(z1,22),7 = 1,2, in
terms of P;(0, z2) and Q;(22).

LEMMA 3.3. The solutions Pi(z1, z2) of equations (3.10) are given by

[Pl(zlaz2)] _ [ b11(21, 22) 512(21722)]
Py(z1, 22) | b21(21,22)  D22(21, 22)

(311) . —PI(O,ZQ) ()\1 +;’!2_)(21(22)_%:|
| P2(0, 22) ()\2 + 212-)(22(2.2) _ 7{12Q
|1 ] 1
‘—Zl B(tzl,ZQ)’
where

B(z1,22) = v2(21 —b(01(21, 22)) ) (21— b(82(21, 22)) )(W1 (21, 22) — 0221, 22))
611(21,22) = 72{02(21,22)[21 - 5(91(217~2) ]5(92 21 22))
—a1(z1, 22)[21 — B(Ba(21, 22))1B(B1 (21, 22)) },
bia(z1, 22) = 3 {lz1 — B(82(21, 22))]B(81 (21, 22))
—[z1 = b(01(21, 22))|b(62(21, 22))},
b21(21,22) = a1(z1, 22)az(z1, 22){[z1 — b(61(z1, 22))]b(82( 21, 22))
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—[21 = b(82(21, 22)))B(81 (21, 22)) },
baa(21, 22) = ya{aa(21, 22)[21 — B(B2(21, 22))]B(61 (21, 22))
—a1(z1, 22)[21 — b(61(21, 22))]B(B2( 21, 22))}.

Now we express the boundary functions P;(0, z5), 7 = 1,2, in terms of
Qi(22). To determine the functions P;(0, 2,), we shall need the following
lemma;

LEMMA 3.4. For a given 29| < 1, the following equation in z,

(3.12) (21 — b(B1(21,22)))(21 — b(Ba(21,22))) = 0
has exactly two solutions in the unit circle.

PROOF. From Lemma 3.2, we have, for |z;] =
Rei(z1,22) >0, : =1,2.
Therefore by using Rouche’s theorem,
(21 = b(61(21,22)))(21 = B(82(21,22))) = 0

has exactly two solutions in the unit circle. O

Let ¢i(22), ¢t = 1,2, denote the two solutions of (3.12). For the sim-
plicity of expression, we assume that ¢1(22) # ¢2(22). Since Pi(z1, z9)
is analytic in the region |z;| < 1,7 = 1,2, whenever the denominator of
Pi(z1,22) vanishes, the numerator must also vanish. Since the denom-
inator of Pi(2;,2;) vanishes at ¢;(22), ¢ = 1,2, we have from equation
(3.11) the following two equations;

ai(¢i(22)7 Zz)Pl(O, 22) — 72]32(0’ 22)
(3.13) = ¢i(z2) {ai(¢i(z2)»z2)[(/\1 + )Ql(z2) _ ”‘10]
—0[(h2 + 2)Qalz2) - ”%]}

From equation (3.13), we express the functions P;(0, 22),7=1,2,in
terms of Q;(z;) as follows.
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LEMMA 3.5. The solutions P;(0, z¢) of equations (3.13) are given by
(3.14)

i) < [ents) etel]-

1

(/\1 + %)Ql‘:*@) - 1

22

(A2 + 2)Qa2iz2) 'uz_q,a C(e)

where
C(z3) = Y2[B2(p2(22), 22) — 01(d1(22), 22) + az(d2(22) — d1(22))],
011(22) = 72[612((132(22), 22)¢2(22) - al(¢1(22),22)¢1(22)],
c12(22) = Y3[¢1(22) — d2(22)],
c21(22) = ar(d1(22), 22)az(da(22), z2)[¢2(22) — $1(22)],
c22(22) = Y2 [az(d2(22), 22)b1(22) — a1 ($1(22), 22)b2(22)] -

Next we find the functions Q;(z2), ¢ = 1,2. Substituting (3.14) into
(3.5) yields the following equations for Q;(z2), ¢ = 1,2.

LEMMA 3.6. The solutions Q;(z) are given by

e [@3]-[2 0] 4] 55

where
D(z) = [(M + 1 +v)2C(z) — (M2 + v)en(2)]
(A2 + 72 +v)2C(2) = (A2 + v)en(2)]
—[12C(2) + (M2 + v)ea(2)][122C(2) + (A2z + v)era(2))],
di1(z) = [2C(z) — en1(2)][(A2 + 72 + v)2C(2) — (Aoz + v)ea(2)]
—21(2)[722C(2) + (A22 + v)e1a(2)],
di2(2) = [20(2) — co2(2)][122C(2) + (A22 + v)c12(#)]
- —ena(2)[(Az + 72 +1)2C(2) — (Aaz + vena(2)],
d1(z) = [2C(2) — en1(2)][n2C(2) + (M2 + v)ea(z)]
—c1(2)[( M1 + 71 + v)2C(2) — (M2 + v)enn(z)],
daa(z) = [2C(2) — ca2(2)][(M + 711 + v)2C(2) — (M2 + v)eni(2)]
—c12(2)[m2C(2) + (M2 + v)ear(2)];

By the following lemma, we can determine the constants g3, ¢ = 1,2.

LEMMA 3.7. The following equation in z, |z| < 1,

(z — b(81(z2,2)))(z — B(82(2,2))) = O
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has the solutions ¢ and 1.

From equation (3.11) and Lemma 3.7, we get

—a1(¢,8) [(M(Ll = @) + 11)@Q1(8) — 12Q2(9))

(3.16) +72 [(A2(1 = ¢) +72)Q@2(8) = 11Q1(8)] =0,

which yields
ai (¢7 ¢)

(3.17) Q2(9) = TQ1(¢)-

Next we find ¢§ and ¢2. By inserting 2; = 1 and § = 0 into (3.8) and
using L’Hospital’s theorem, we obtain, for ¢ = 1,2,

(3.18) }5(0 1 1) - v [P1(1,1) + Py(1,1)] - b+ (1w Qu(1) — 7:Qi(1))
. T T+ 72 '

Note that P;(1,1) + P2(1,1) is departure rate and departure rate must
be the same as arrival rate at steady-state. Hence we have

)= Y2 A1 + Y122

3.19 Pi(1,1) + Py(1,1
(3.19) 1(1,1) 4 Py( po——

2

From the total probability 1 = 3. [Q,-(1) + B0, 1, 1)] , we obtain Q; (1)+
i=1

Q2(1) = 1—p as the probability that the channel is idle, and P;(0,1,1)+
Py(0,1, 1) = p as the probability that the channel is busy. Thus we ob-
tain explicit expression for the boundary constants ¢} and ¢Z. By insert-
ing (3.11), (3.14) and (3.15) into (3.8), we have expressed Pi(6, 21, 23)
explicitly in terms of known parameters a;, § and 7;.

4. Special case

As the rate of exponential retrial time tends to infinite, queue length
distribution for queueing system with retrial approaches to that for
queueing system without retrial. We show that the above facts hold for
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MMPP, M/G/1 queue without retrial (Choi and Han[1]). Let QEO)(z) =
lim Qi(z) and q(',(o) = lim ¢}, ¢ =1,2. From (3.15), we have
V—00 V—00

(4.1) Q) =49, i=1,2

From (4.1) and (3.17), we obtain explicit expression for the boundary

constants qé(o), 1 =1,2,

1(0) 1-—
90 = T2 P
(4.2) Lg(o)} - [al(cb, ¢)] a1(¢,¢) + 72

The above result agrees with the one for ordinary MMPP,M/G/1 queue
(Choi and Han[1]).
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