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COHOMOLOGY OF FLAT VECTOR BUNDLES

Hong-JonGg KIM

ABSTRACT. In this article, we calculate the cohomology groups of flat
vector bundles on some manifolds.

1. Introduction

One of the most important invariants of a compact manifold is the
Euler characteristic. This invariant can be obtained in many differ-
ent interesting ways. For instance, if a smooth structure is given, H.
Hopf’s theory of vector fields, M. Morse’s theory of the critical points
of functions and Gauss-Bonnet-Chern’s theory of curvatures all describe
beautiful ways to understand the Euler characteristic. De Rham’s coho-
mology theory also gives the invariant and its generalization to arbitrary
flat vector bundles also computes the Euler characteristic.

When one considers a Morse function f on a compact (smooth con-
nected) manifold (without boundary) M, it is well-known [Mil] that the
number ck(f) of the critical points of f of index k is bounded below by
the k-th Betti number bi(M) of M,

cx(f) = k(M)

for every integer k. In fact one can replace f in the above inequality by
an arbitrary Morse-Novikov 1-form w on M;

cr(w) > bp(M).
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Note that a 1-form w on M is called a Morse-Novikov 1-form if w = df
locally for some Morse function f [BF, DFN, N, NS, P|. The number

ck(w) is the number of zeroes of w whose “indices” are equal to k.

Let

ck(M) := min{ck(w) | w : Morse-Novikov 1-form on M}
Br(M) :=sup {Bx(M,E) | E —» M is a flat vector bundle},

where

h*(M, E)
rank E
and h¥(M, E) is the dimension of the k-th cohomology space H*(M, E)
of a flat vector bundle E over M.
In [K1], the above weak Morse inequality is generalized to the follow-
ing inequality:

ﬁk(MaE) =

THEOREM 1. For a compact smooth manifold M, the inequality
cx(M) > Be(M)

holds for all integer k.

Note that when £ — M is a trivial line bundle with the trivial connec-
tion, h¥(M, E) is equal to the ordinary k-th Betti number bx(M) of M.
Note also that the existence [DFN] of a Morse function with one local
maximum point and one local minimum point on & compact n-manifold
implies that

Co(M) =1= Cn(M)

A Morse function f : M — R is called an ezact or a minimal function
[F] if ck(f) = k(M) for all integer k. It is known [Sm, F] that on a
simply connected compact manifold of dimension > 6, there exists an
exact Morse function and

ck(M) = bp (M) + qi(M) + qe—1( M)

where ¢x( M) denotes the minimal number of the generators of the torsion

subgroup of Hy(M,Z).
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In [Bott], a Morse function f defined on M is said to be perfect if
ck(f) = bx(M) for all k. Perfect functions are clearly exact. Thus if M
is perfect, i.e., if M admits a perfect Morse function, then

br(M) = Br(M)

for all k. For instance, spheres 8™, tori T" and the complex projective
spaces P"(C) are all perfect.

Note that non orientable compact manifolds are not perfect, since any
Morse function admits a maximum and the top Betti numbers are equal
to zero for such manifolds.

We have the following observations.

COROLLARY. Let E be a flat vector bundle over a perfect compact
manifold M. Then
Br(M,E) < by(M)

for all integer k.

PROPOSITION. The product of two perfect compact manifolds is per-
fect.

PROOF. Let f; : M; — R and f» : My — R be Morse functions on
compact manifolds. Since f;’s are bounded, we may assume that they
are positive, by adding some constants, if necessary. Let Crit(f;) C M,
be the set of critical points of f;. Let

f(my,my) := fi(my) fa(ma), (my,mq) € My x M.

Then
df = frdfs + f2dfr

and hence the critical set of the function f is
Crit(f) = Crit(f1) x Crit(f2 .
Moreover, the Hessian of f at each critical point (mq,m2) is

Hess f(my,mq) = fi1(m1) Hess fa(ms) + f2(m2) Hess fi(ma1)
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Thus Hess f(m;,m2) is nonsingular, and the Morse indez, i.e., the max-
imal dimension of the tangential subspace on which Hess f(mj,m2) is
negative definite, is given by
ind f(m1,mz) = ind fi(m1) + ind f(m2).
Thus the number of critical points are related by
ek(f) = Z ek, (f1) - ek, (f2)
ki +ko=k
for all integer k. In particular, when f; and f, are perfect, we have
ck(f) = Z by (M1) - bi, (M) = bx(My x Ma).

k1 +k2=k‘

This completes the proof.

In this article we compute the cohomology spaces of flat vector bundles
over some manifolds. Note that a parallel section on a flat vector bundle
is determined by its value at a single point and hence

Bo(M)=1
for every compact manifold M. We also prove the following theorem.

THEOREM 2. Let M be a Galois covering space of a compact man-
ifold M with the finite Galois group T' := m(M)/n1(M). Let p be a
representation of I' on some finite dimensional complex vector space V.
Then

Bre(M, M x, V) < bi(M)

for all k.
As a corollary we have,

COROLLARY. Let M be a universal covering space of a compact man-
ifold M with the finite fundamental group. Then

Br(M) < by (M)
for all integer k.

We like to thank KyungHo Oh [Oh] for explaining algebraic aspect of
flat connections as in [Borel].
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2. Review of Flat Vector Bundles

Let E be a (complex) vector bundle over a smooth connected n di-
mensional manifold M. Then a connection V for the bundle E — M
induces a sequence of exterior derivatives:

(1)  0— A°(M,E) 2% AYM,E) 2% .. 2% A™(M,E) — 0,

where A*(M, E) denotes the space of differential k-forms on M with
values in E. We say that the connection V is flaf if the above sequence
is a chain complex, 1.e.,

dedeO.

A vector bundle E — M together with a flat connection V on it 1s
called a flat vector bundle. We will often say that E is a flat vector
bundle, when it really means that the pair (E, V) is flat. For instance,
the tangent bundles of the “space forms” [W] and the affine manifolds
[BP] are all flat.

A flat bundle E — M gives rise to cohomology spaces H K(M,E) as-
sociated to the above chain complex (1), and the dimension of H*(M, E)
will be denoted by h*(M, E);

h*(M, E) := dim¢ H*(M, E).

This cohomology space can be used to compute one of the most impor-
tant topological invariants of the base manifold, the Euler characteristic;

X(M) =Y (—1)*Bx(M, E)
k

where (M, E) := h—:éﬁ—’? The above identity can be proved by the
Atiyah-Singer index formula [AS], or by the strong Morse inequality [K1].

A flat bundle and its cohomology spaces can be interpreted as a system
of local coefficients [St, Die] or a locally constant sheaf [Sp]. This point

of view will not be considered in this article.
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2.1. Holonomy Representation. Let £ — M be a flat vector
bundle. We fix a point mq € M, then the fundamental group 71 (M, mg)
of M at mg acts on the fiber E,,, of E — M as follows. Let

v:[0,1] - M

be a piecewise smooth path with 4(0) = m¢ and 4(1) =: m;. Then for
each element e € E,, there exists a unique parallel section ¥, of E along
v with %.(0) = e. Then the linear map

Enyde—F(l)=te-v€ E,,

is called the parallel transport along +. Since our connection is flat,
the parallel transport depends only on the homotopy class of paths. In
particular, when the base manifold M is simply connected, every flat
vector bundle is trivial and hence 3x(M, E) = by (M) for all k.

If we consider the loops on M based at mg, then we obtain the action
of the fundamental group = (M, mg) on the fiber E,,,. This representa-
tion is called the holonomy representation.

2.2. Universal covering space. Let p : M - M be a universal
covering space of M, then the fundamental group 7, (M, mo) of M at a
point mg € M acts on the right of M when we fix a point mi, € M with

p(mig) = my. In fact the action

Rg:M—-r]\Z, Vg€ m(M,my)

is given as follows: Let 72 € M. Take a smooth path 7 : [0,1] — M such
that 7(0) = miy and 5(1) = . Then

Yi=poy
1s a path on M from mg to m := p(m). Now
-1
Y oOxgxy

1s an element of (M, m). Then the end point of the lifting of this
homotopy class of loops is by definition Ry(rn).
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Then it is easy to see that a flat vector bundle £ — M is isomorphic

to the vector bundle 5
M x, En,

associated to the “principal bundle” M — M and the holonomy repre-
sentation p.

Conversely, let V be a finite dimensional complex vector space and
let p: 7 (M,mo) — GL(V) be a representation. Then

E:=Mx,V

becomes a flat vector bundle over M. Note that each n € M induces
an isomorphism
It Epiay 3 [(M,0)] mov eV
Let
o
Ay(M,V)
be the space of differential k-forms £ on M with values in the vector
space V satisfying
Ry =p(9)7'¢, Vg €m(M,m)

Then the map 3
p*: AN(M,E) — Aj(M,V)

defined by
(p*é)fn(wh s awk) = jﬁ’lép(‘ﬁ’l)(p*wla s ap*wk)v Vwy,...,wg € TﬁzM

is an isomorphism [C, Rag]. In fact this isomorphism commutes with the
exterior differentiations and hence the chain complex (1) is isomorphic
to

0——>A2(M,V)—+A;(M,V) — = AT(M,V) — 0.

This observation gives an easy way to compute the cohomology groups
of many flat bundles. We will often denote by

H*(M, p)

the cohomology spaces of the flat bundle associated to a representation
p of the fundamental group of M.
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2.3. Indecomposable Flat bundles. A flat vector bundle E — M
is said to be decomposable, if there exist nontrivial subbundles E; and
E; such that E = E; @ E; and E;’s are invariant under the parallel
transports. Note that a flat vector bundle is decomposable if and only
if it corresponds to a decomposable representation of the fundamental
group of the base manifold. In this case each dirsct summand of E is
also flat and

H¥M,E)= H*(M,E,)® H*(M. E,).

Note that

h¥(M, E) h¥(M,Ey) h*(M,E,)
———— < max , :
rank E rank F, rank F,

Thus the invariant Gx(M) of a compact manifold M is equal to the
supremum of {Bx(M,E)}, where E runs through indecomposable flat
bundles over M.

PROPOSITION. Let M be a compact manifold whose fundamental
group is abelian. Then

Be(M) = max{r¥(M,L): L — M is a flat line bundle }

for all integer k.

PROOF. Note that any complex representation of an abelian group is
one dimensional. Thus if £ — M is indecomposable, then it is a line
bundle.

Note that a complex line bundle L — M admits a flat connection if
and only if the real first Chern class ¢;(L)g € H?(M,R) vanishes.

3. Hodge Theory

Let M be a smooth n-manifold and let I be a properly discontinuous
group of diffeomorphisms acting on M on the right. Thus [Die] each
m € M has a neighborhood U such that

UnNnU~y =190
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for any nontrivial v € I'. Then the quotient map p : M —> M:=M/Tis
a covering map. We will assume that M is compact. Let p: I' — GL(V)
be a representation of I' on some complex vector space V.

We will assume that M admits a Riemannian metric for which I' acts
as isometries so that the quotient M inherits a Riemannian metric. We
also assume that V admits a Hermitian inner product for which I' acts
as isometries. Then the vector bundle

E:=Mx,V—-M

is equipped with a natural Hermitian metric and a compatible flat con-
nection V. Let d% be the formal adjoint of the chain complex

0— A°(M,E) 2= ANM,E) &% ... - A"(M,E) - 0

and let
A = dydy + dodv

be the associated Laplacian. Then the cohomology spaces H k(M,E) are
isomorphic to the finite dimensional space

HX(M,E)={t € A¥(M,E): At =0}

of harmonic sections. ) )
Note that if d* : AMY(M,V) — A*(M,V) is the formal adjoint of
d: AK(M,V) — A¥1(M,V), then

d* (AR (M, V) C ANM, V), d*p* = p*dy

and

A(A¥M,V)) c AY(M, V),  A:=dd*+d*d
P P

Thus
HY(M, E) ~ HX(M, E) =~ ker(A| 421, v))-

In particular we have
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THEOREM 3. Let M be a universal covering space of a compact man-
ifold M. If the fundamental group of M is finite, then

Br(M) < bi(M)

for all integer k.

One can compare this theorem with that of Leray-Hirsch [BT, Die].
The above theorem can be easily generalized to the following theorem.

THEOREM 4. Let M be a Galois covering space of a compact man-
ifold M with the finite Galois group T' := my(M)/7(M). Let p be a
representation of I' on some finite dimensional complex vector space V.
Then ) )

ﬁk(M,M Xp V) S bk(M)

for all k.
This is a generalization of the following well-known fact [BP, p.305).

COROLLARY. Let M be a finite Galois covering space of a compact
manifold M. Then ;
be(M) < by(M)

for all k.
COROLLARY. If a manifold M is covered by a sphere 8™, n > 2, then

ﬂk(M):O, 0<k<n.

We now compute the top dimension H"(M, p) for a compact manifold
M with a finite Galois covering M and a represerntation p : w1(M) —
m (M) /71 (M) — GL(V). We may assume that M is oriented and there
exists a Riemannian metric on M invariant under the action of the Galois
group T’ := m(M)/my(M). Then the volume form vol ¢ A™(M) is
harmonic and
RZ vol = sgn(v)vol, Vy €9,

where sgn(7) is equal to 1 if R., : M — M preserves the orientation, and
is equal to —1 if R., reverses the orientation. Thus we have

H™(M,p) = H}(M,V) > {f €V :sgn(7)f = p(vf, Vv € m(M)}.
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For instance, if p is the nontrivial one-dimensional representation of
the fundamental group of the real projective space RP™, then

1, k=n, nis even

e -

0, otherwise

We have the following observation.
PROPOSITION. For any compact n-manifold M, f,(M) = 1.

PROOF. Note that these exists a Morse function on M with a unique
local maximum point [DFN]. This implies that 3,(M) < 1. Thus it
suffices to show the existence of a flat vector bundle E over M with
Bn(M,E) = 1. When M is orientable, one can take the trivial flat line
bundle for E. Now suppose that M is not orientable. Then there exists
an orientable double covering space M of M. The flat line bundle L over
M associated to this double covering space has the desired property; for,
if v : M — M is the nontrivial deck transformation, then v reverses the
orientation of M and hence if vol denotes the volume form of M with
respect to a metric for which « is an isometry, then

v*vol = —vol.
Thus a harmonic n-form ¢ = cvol on M satisfies
7= -¢
Thus 8,(M, L) > 1. This completes the proof.

As an example we consider flat bundles over the Lens spaces. Let
g € U(n) acts on the odd dimensional sphere

S = {(21,...,20) €EC"t |z [P 4 -+ + |2n|? = 1}.

We will assume that g7 = 1 for some positive integer p and g* has no
fixed points for 0 < k < p. Then we have a free action of the cyclic
group Z, = {0,1,...,p — 1} of order p on the sphere §2n—1,

After the diagonalization, we may assume that

g(zla"-vzn) = (wﬁlzla~"awnzn)
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for some p-th roots wy, .. .,w, of unity. Since the action is free, the roots
wj—_-e%riq"/}’, q]€{1,p-—1}, j=1...,n

are primitive. Recall that a p-th root w of unity is said to be primitive if
w* # 1 for 0 < k < p. Thus p and each g; are relatively prime. Now the
quotient space of S2*~! under this action is called the Lens space [Ray]
and will be denoted by

Ly Mgit ot qn)-

Let
Pp.q i Ly — C¥, ¢€{0,1,...,p—1}

be the representation with
Ppa(l) = ™97,

Then the dimensions of the cohomology spaces of the flat line bundle
over Li"‘l(ql : -+ i gn) associated to the representation p, 4, ¢ # 0, are

BE (L2, ) = 0

for all k, by the Hodge theory.
The Hodge theory can be applied to compute the cohomology spaces
of flat vector bundles over tori [K2].

4. Poincaré duality

Let E be a vector bundle over a compact Riemannian n-manifold M.
We will assume a Hermitian structure on F and a compatible connection
V on E. Then the adjoint dy, of the exterior covariant differentiation

dv : A¥(M,E) - A¥Y(M E)
is given by

4y = —(=1)" xdyx : A¥Y (M E) —» A¥(M, E),
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where * denotes the “local” Hodge star. Then the kernel of the Laplacian
A = dydy + dydy
on A¥(M, E) will be denoted by
HY(M,E).

Note that when V is flat, this space of harmonic forms is isomorphic
to the cohomology space H*(M,(E,V)). When M is orientable, there
exists a global Hodge star x, and * commutes with the Laplacian. Thus
we have

PROPOSITION. Let E be a Hermitian vector bundle over a compact
orientable Riemannian n-manifold M, and let V be a connection on E
compatible with the Hermitian structure. Then

HY(M,E)~ HX *(M,E)
for all integer k.

COROLLARY. Let E be a flat vector bundle over a compact n-manifold
M associated to a unitary representation of the fundamental group of
M. If M is orientable,

Br(M,E) = Bn-k(M,E)
for all integer k.

We now consider the dual vector bundle EY of a Hermitian vector
bundle E over a compact Riemannian n-manifold M. Then a Hermitian
connection V on E induces a connection VY on EVY, which is again
compatible with the canonical Hermitian structure on EV. Now let

§: A¥(M,E) — A¥(M,EY)

be the canonical conjugate-linear map induced from the Hermitian struc-
ture. Then this map commutes with the local Hodge star and

ﬁodv—_‘dvv Oﬁ.

This implies that
fody =dyv of.

Thus HY(M,E) and H % (M, EV) are conjugate-linear isomorphic.
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COROLLARY. Let E be a flat vector bundle over a compact n-manifold
M associated to a unitary representation of the fundamental group of

M. Then

ﬂk(M? E) = ﬂk(M’EV)

for all integer k.
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