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FINITELY NORMAL FAMILIES
OF INTEGER TRANSLATIONS

JEONG-HEON KiM

ABSTRACT. For an open set G in the complex plane C, we prove the
existence of an entire function f such that its integer translations forms
a finitely normal family exactly on G if and only if G is periodic with
period 1 and G has no hole.

1. Preliminaries

A family F of functions f,(z), holomorphic in a domain D. is said
to be finitely normal in D if every sequence {f,(z)} from F has a
subsequence that converges uniformly on every compact subset of D to
a holomorphic function. We say a family of holomorphic functions is
finitely normal at ¢ point z € C if there is an open neighborhood of =
such that the family is finitely normal on the neighborhood.

We state P. Montel’s well-known criteria for finitely normal families[6].

THEOREM A. A family F of functions f(z), holomorphic in a domain
D, is finitely normal in D if and only if the family F is uniformly bounded
on every compact subset of D.

In this paper, we consider the finite normality of the family of integer
translations, {f(z + n) : n = 0,£1,£2, -}, for an entire function f.
We say a set G is periodic with period 1if 2+ 1€ G, for all z € G.
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THEOREM 1.1. For a nonempty open subset G of C, there is an entire
function f such that the set { f(z+n);n = 0,%1,+2,- -} forms a finitely
normal family exactly at z in G if and only if the set G is periodic with
period 1 and its complement has no bounded component.

To prove the existence part of the theorem, we use Arakelian’s uni-
form approximation theorem by entire functions on closed subsets of the
complex plane C. We follow the phrasing of [7]. For a set E, we call any
bounded component of the complement of E by a hole of E.

A closed set E, possibly unbounded, of the complex plane C is called
an Arakelian set if it has no hole and if, for any closed disc D, the union

of all holes of the set £ U D is bounded.

THEOREM B[7]. Let E be an Arakelian set in the complex plane C.
If a function g is continuous on E and is holomorphic in the interior of
E, then for any € > 0, there exists an entire function f such that

1f(z) —g(z)] <e
forall z ¢ FE.

DEFINITION 1.2. Let f be an entire function. We define the set
FN(f) to be the set of all zg € C such that the set {f(z +n):n =
0,+1,+42,---} is finitely normal at z.

2. Some properties of FN(f)

From definition, the set FN(f) is a periodic open set with period 1.
And the following theorem shows the set FN(f) need not be connected.

THEOREM 2.1. There is an entire function f such that FIN(f) is not
connected.

ProoF. For j = —1,0,1, we let
o1 1
Ej:{ZEC:]—ZSImZS]+Z}

and

E=E_UEyUE,.



Finitely normal families of integer translations 337

Then E is a closed set without holes. And for any closed disc D, the
set £ U D has no hole. Hence E is an Arakelian set.
We define a function ¢ on the set £ by

\ 0, ifze E_{UE,
gz)=4¢ . .
e*, if z € Ey.

Then by Theorem B, there exists an entire function f such that

1f(z) —g(2)l < 1,
for all 2 € E. Thus for all » € Int(E_; U E;) and integer n,

If(z+n)] < 1.

Hence Int(E_; U E;) C FN(f) by Theorem A.

But for any 29 € Ey, we have
[f(z0 + )| > |e*F"| — 1
— 00
as n — 00. Thus zg ¢ FN(f) and Eyg N FN(f) = ¢. Therefore the set
FN(f) is not connected.
For every entire function f, the set FN(f) is a subset of FN(f'), but

FN(f)# FN(f’) in general. For example, let f(z) = z, then FN(f)=¢,
but FN(f')=C.

THEOREM 2.2. Iffis an entire function, then FN(f) C FN (f').

PROOF. For any 29 € FN(f), we can choose positive numbers € and
M such that B(zo,2¢) C FN(f) and

[f(z+n)] <M
for all z € B(zq, 2¢) and integers n. By Cauchy’s theorem,

N 1 F(w)
lf (z + n)] = ’ﬁ/lw—(zo-Fn)f:f (w — (z + n))2 dw
M

for all z € B(zg,€) and integer n. Hence zp €FN(f'). This completes
the proof.
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THEOREM 2.3. For every entire function f, the set FN(f) has no
hole.

PROOF. Let E be a bounded component of the complement of the
set FIN(f). We choose a bounded curve v C FN(f) so that it encloses
the set E. Since ¥ C FIN(f) and it is a compact set, there exist points
21,22, -+ ,2, and numbers ry,ry, - ,7,, My, My, -, M, such that

v | B(zrj)

i=1

and
If(z+n)| < M;

for all z € B(zj,r;) and for every integer n.
Let

then we obtain

If(z+n)f <M

for all z € v and for every integer n. So by the maximum modulus
theorem, we have

lf(z+n) <M

for all z € E and for every integer n. This means that E C FN(f). This
is a contradiction. Hence the complement of FN(f) has no bounded
component.

3. A construction of an Arakelian set

We need some topological facts. We state them as lemmas without
proofs.

LEMMA 3.1. Let Q be an open set in the complex plane C . For each
positive integer n, we let

Jn={2z:d(2,Q°) > —le}ﬂ{z i |Rez| < n, [Imz| < n},

then every component of J¢ contains a component of Q¢ (See [2]).
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LEMMA 3.2. If A, B are connected sets and if AN B # ¢, then the
set AU B is connected.

LEMMA 3.3. If a connected set A intersects a set B and its comple-
ment at the same time, then A intersects the boundary of B.

LEMMA 3.4. If§2 is an open set in the complex plane C | then every
component of § is open in C.

Now we construct an Arakelian set from a given open set having no

hole.

THEOREM 3.5. Let G be an open set in the complex plane C without
holes. For each positive integer n, we define a compact subset K, of G

by
K, ={z:d(z,G°) > %} NS,

where
S, ={2:n-1<|Rez| <n, |Imz| <n}.

Then the set
K = U K.

=1
1s an Arakelian set.

PROOF. The set K has no hole: Let

then K C S and S°¢ has only two components in C, say
C={2€85:Imz >0}

and
S ={2€5°: Imz <0},

and both of them are unbounded.
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First we show, if the set K¢ has a bounded component Cx, then Cg is
a subset of S. Next we derive a contradiction by showing the component
Ck contains a component of G¢ which is unbounded.

Suppose that Cj intersects the complement of the set S, say Cx N
S¢ # ¢. Then the set Cx U S5 is connected by Lemma 3.2. Since
S¢c K¢, CxUSS C K° So the component Cx contains unbounded
set S, this contradicts the boundedness of Cx. We get the same result
for the case Cx N S° # ¢. Hence Cx must be contained in §.

By assumption Cg is bounded and by Lemma 3.4 it is open in C.
Since C C S, there is a positive number N such that

(3.1) CrNInt(Sy) # ¢ and Cx NInt(Sy+1) = 9.

Let Jn be the compact subset of C which is defined for the open set
G as in Lemma 3.1. By the definition of the set Ky, we have Ky =
Jn NSy, From (3.1), we can choose a point zg € Cx N Int(Sy) and we
obtain

(3.2) zg €Int(Sy)NCxr CSNNKy = SNN{INNSN) = SN Jy.

Here we let C;, be the component of J§ containing zo and we shall
show Cj, C Ck. If not, t.e., Cyy, ¢ Ck, then the connected set Cj,
intersects both of C and C§.. So there is a point wg € 8Cx N Cy, by
Lemma 3.3. Since Ci C S, there is a number ng(ny < N) such that

wo € OCK N Cyy N Sy,

Because Cx(C K¢) is open, 8Ck C K and by the definition of K,
we have
wo € 0CKkNSp, CKNS,, = Ky,

and

1 1
3.3 > —>—.
( ) d(wO’G ) — nO —_ N

On the other hand,

wo € Cyy N{z: |Rez| <N, |Imz| < N}
CJyN{z:|Rez| <N, |Imz| < N},
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so the definition of Jy gives

1

(34) d(wQ,GC) < K]‘

From (3.3) and (3.4), we obtain

51\7 < d(wy, G%) < ]—1}:
This is impossible; thus we can conclude Cj, C Ck.

But Lemma 3.1 says that the component Cj, of J§ contains a com-
ponent of G° which is unbounded. This contradicts the boundedness of
Ck. Therefore every component of A'¢ is unbounded.

Now, we shall show that for any closed disc D, the union of all holes
of the set K U D is bounded. We consider the following two cases.

Case 1. DN S = 4.

Recall that §¢ has only two components S§ and S°. Let D = B(w,r)
be given closed disc; since D C S, by the connectedness of D, D C S5 or
D C §¢. We assume D C S$. Since S is connected(path connected),
for any two points z;, 23 in S§\D, there exists a path v : [0,1] — 5SS
such that v(0) = z;, y(1) = 2,.

If 4([0, 1]) does not intersect D, then 7 is a path in S¢\D. If ([0, 1])
intersects D, we let

P %min{d(D,S), d(zi, Dyi = 1,2)}

and take the circle Cjs centered at & of radius r+6. Then Cs C SS\D and
the path ~ intersects the circle Cs. Let 0 < t; < t5 < 1 be the smallest
and largest numbers respectively such that Cs N y(t;) # ¢, ¢ = 1,2. Let
I = 4([0,#1])U~v1 Un([t2, 1]) where 7, is the arc from ¥(t) to 4(tz) along
the circle Cs counterclockwise. Then T' is a path in SS\D joining z; to
z2. Therefore the set S{\D is connected. By the same arguments, we
can prove the set S¢\D is connected.

Since S$\D (C (S U D)) is connected, unbounded and (S U D)¢ C
(K'UD)®, there is the unbounded component Csp of (KUD)® containing
SS\D.
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Let Cp be a component of (K U D)¢ which is different from Csp.
Since (K U D)¢ C K¢, there exists a component Crp of K¢ such that
Cp C Ckp. Since Cxp ﬂS_‘i_ =¢,CxkpND=¢and Cxp C (K UD).
Thus each component of (K U D)° which is different from Cgp is also a
component of K¢, so it is unbounded by the first argument of this proof.

Hence, if DN S = ¢, then (K U D)° has no bounded component and
there is nothing to prove.

CASE 2. DNS # ¢.
Let N be the largest integer such that DN Sy # ¢. Let

Spy ={z:|Rez| < N, |Imz2| < N}UDUS;
then K UD C Spy and S§, has only two components
Sty ={z€ 8%y : Imz > 0}

and
Son=1{2€ Spn :Imz2 <0}

in C and they are unbounded.
We carry out the proof in two steps.

LEMMA 3.5.1. If Cp is a bounded component of (K U D)¢, then Cp
satisfies:

(a) Cp C Int(Spn);

(b) 8Cp N D # ¢.

PROOF OF LEMMA 3.5.1. (a) If Cp intersects the complement of the
Spn, assume Cp N S$N # ¢, then the set Cp U SI-;N is connected by
Lemma 3.2. Because S§,y C (K U D)¢, the set Cp U SJ, is a subset
of (K U D)°. So the component Cp of (K U D)* contains S}, which is
unbounded. This contradicts the assumption that Cp is bounded. We
obtain the same result for the case Cp N S,y # ¢.

Hence, if Cp is a bounded component of (K U D)¢, then it must be
contained in Spy. But by Lemma 3.4, the component Cp, is open in C,
so Cp C Int(Spn). (b) To show dCpN D # ¢, we assume ICpND = ¢
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and let Cx be the component of K¢ containing C'p. We shall show that
CD = CK'.
If Cp is a proper subset of C, then Cp\ICk # ¢ and we have

(3.5) 0Cp\0Ck C CD\BCR’ C C'K\BCK =Cgk,

because Cx 1s open in C. From the assumption, 3Cp N D = ¢, we have
0Cp C D°. So with (3.5), we can choose a point

z) € (GCD\GCK) N Cg N DC.
Since C'x N D¢ is open, we can choose an open ball B(z;,€) such that
B(z1,6) C Cx N D° (C (KU D)°).

But z; € 8Cp, so B(z,¢) intersects Cp and the set Cp U B(z;,¢) is a
connected subset of (K U D)¢ by Lemma 3.2. Hence the component Cp
contains the open ball B(zq,€). This contradicts z; € 9Cp C C§,.

Thus Cp = Ck and Cp is unbounded because K¢ has no bounded
component. But we assumed Cp is bounded. This is a contradiction.
Therefore every bounded component of (K U D)° must intersect the
closed disc D on its boundary. This completes the proof.

LEMMA 3.5.2. Let C§, be a component of (K UD)¢ with the following
properties:

(2) 3 C Int(Spw);

(b) C% intersects the line segment,

L+:{2:Rez=No+—21-, Imz| < Ng + 1}

where Ny = max{N,3}. (Recall, N is the largest integer such that
DN Sy # ¢.) Then the number of components such as C is finite.

PROOF OF LEMMA 3.5.2. By the definition of LY, Lt C S, 41.
Suppose there are infinitely many C%’s with the properties () and (b).
We take a point z, from each set C 2N L*. For each z,, there is a point
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wq € G° such that: (1) d(zq,wa) < No_1+I : 2o € Cp N SN +1;
(2) B(wg, —NOI?) C Int(Sn,+1): For any w € B(w,, ﬁ),

2 2
Rez, — R o
e N0+1< ew < Rez +N0+1
and
(3.6) No < Rew < Ng + 1,

because Rez, = Ny + %, Ny > 3 and w, z4 are in B{wg, ml—ﬁ) Since
the open set B(wa,woh—l) (C K¢ ND°) intersects C3, the set Cf U
B(wq, ﬁ) is a connected subset of (K U D). Hence the component
C contains the open ball B(w,, ﬁ) But by (a), C C Int(Sp), so
with (3.6) B(wa, N_01+T) C Int(Sny+1);
(3) If a # 3, then B(wa,, ﬁ) N B(wg, Wl+7) = ¢: It follows from the
fact B(wq, ﬁ) C C§ which was proved in (2), because C3 N Cg = ¢.
From (1), (2) and (3), we conclude that the set Int(S~4+1) contains
infinitely many disjoint open balls whose radius is m%r—l This is impos-
sible. Hence the number of components with the properties (e¢) and (b)
is finite. We get the same result for the line segment L~ where

L™ ={z:Rez=—(Ng+ -:15), Imz| < N + 1}.

From Lemma 3.5.1, we can say; if Cp is a bounded component of
(K U D) which is not contained in the set

{z:|Rez| < Ng+1, [Imz| < Ny + 1},

then it must intersect the line segment L* or L™.
But the number of such components is finite by Lemma 3.5.2. There-
fore the union of all bounded components of (A U D) is bounded. This

completes the proof of Case 2.

Since the set K is closed in C, K is an Arakelian set



Finitely normal families of integer translations 345

4. Proof of Theorem 1.1

To prove our theorem, we need a few lemmas.

LEMMA 4.1. In Theorem 3.5, if the open set G is periodic with period
1, then for any compact subset @ of GN {z: -1 < Rez < 1} , there is
an integer N(> 2) such that n > N implies

Q+n C (Kny UKq)

where @ +n = {z 4+ n:z € Q}.
PROOF. Let d(Q,G°) = § > 0; then there exists an integer N{> 2)
satisfying

1

max{|Imz|:2€ @} <N -1 and 62N——1'

Forn>Nandz€Q, 2+n € (S,~1US,) by the definition of 5,. Now
by the periodicity of G, we obtain

dz+n,G) > d(Q,G)=06
1 1 1
> —-.
- N-1 >n——1 > n

By the definition of K,, we have z +n € K,,_, U K,,.

We omit the proof of the following lemma.

LEMMA 4.2. Let Q be an open connected set and W be a countable
set without finite limit points. Then the set Q\W is connected.

LEMMA 4.3. Let F be a closed set and W be a countable set without
finite limit point. Then each component Crw of (FUW )¢ has the form

Crw = Cp\W

where Cp is the component of F° containing Crw .
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PROOF. Since the set Cpw N (Cp\W) is non empty and by Lemma
4.2 the set Cp\W is connected, the union Crw U(Cp\W) is a connected
subset of (F'UW )¢ by Lemma 3.2. So the component Cpw of (FUW)®
contains the set Cp\W.

On the other hand,

Crw = Crw\W C Cp\W.
Hence we can conclude Crpy = Cp\W.

PROOF OF THEOREM 1.1. Throughout this proof the sets S,, Kn

and K are same as in Theorem 3.5.
Let {w;} be a countable dense subset of {z € G°: 0 < Rez < 1}. For
each positive integer i, we let

Wi ={wij=wi+j°+1:75 21},

and -
w=Jw.
i=1
Then W is a closed subset of G°. And the set W is countable without
finite limit point.
Claim: Let E = K UW, then E is an Arakelian set.

PROOF OF CLAIM. From Theorem 3.5 we know that A is an Arake-
lian set. By Lemma 4.3. each component Cg of E° has the form
Cg = Cx\W where Cg is the component of K¢ containing Cg. Since
K is an Arakelian set, C'x is unbounded. Hence the component Cg of
E° is unbounded.

For a closed disc D, let Uae aC'%p be the union of all bounded compo-
nents of (EUD)°. Then for each a € A, there is the bounded component
C%p of (K U D)¢ such that Cgp = C%p\W by Lemma 4.3. Since

U Cgp C U Ckp

acA acA

and UaeaC¥ p is bounded, the union UaeaC%p is bounded.
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Finally, K and W are closed sets. Therefore E = K U W is an
Arakelian set.

Now, we define a function g on the set E by

41) ) {0, ifze K
. Z) =
( g s, ifzeW,

then ¢ is holomorphic on E because K N W = ¢. So by the Claim and
Theorem B, there is an entire function f such that

(4.2) l9(z) — f(z)l <1

forall z € E.

We shall show that FIN(f)= G. By the periodicity of G, it is enough
to check for z with @« < Rez < a + 1, a is a real number.

For any zo € {z € G : --;— <Rez < -;12-}, we choose a positive number
e(< %) so that B(zq,e) C G. There is a positive integer N(> 2) such
that n > N implies B(z + n,¢) C K3 UK, (C K) for all z € B(z,€)
by Lemma 4.1. For n > N and 2 € B(2q,¢), we have

[flz+n) <1
by (4.1) and (4.2). So we can conclude that

|f(z +n)] ,é%"}v’il{‘f(z)” +1

for all 2 € B(zg, €) where
Byi1 ={z:|Rez| < N+1, [Imz| <N +1}.

Since the entire function f bounded on the compact set Ry, the fam-
iy {f(x+n):n = 0,+1,42,---} is uniformly bounded on B(zg,e).
Therefore zg belongs to FIN(f).

On the other hand, {w;} is a dense subset of {z € G°: 0 < Rez < 1},
so for any wg € {z € G°: 0 < Rez < 1} and € > 0, B(wyq, €) contains a
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point w; in {w;}. Take a subsequence {f(n? + ¢+ z) : n > i}; then we
have

|f(wi +n? +9)] = | f(win)|
> |win + 0%+ — 1

which tends to infinity as n — oo. Hence wq does not belong to the set

So the entire function f satisfies desired property FN(f)=G. This
completes the proof.
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