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SOME EXTENSIONS ON THE
INJECTIVE COVER AND PRECOVER

SANG WON PARK

ABSTRACT. In this paper, we show relations betwzen Injective covers
and direct sums, some commutative properties, anc composition prop-
erties in the injective covers.

1. Introduction

Using the dual of a categorical definition of an injective envelope,
Enochs in [3] defined an injective cover. The existence of an injective
cover is not for all cases but every left R-module has an injective cover if
and only if a ring R is left noetherian (Theorem 2.1. [3]). In this paper
we show relations between injective covers and direct sums, some com-
mutative properties, and composition properties in the injective covers.
Some information about the structure of the injective cover of mod-
ules both general and in some special cases can be found in Enochs(3],
Ashan,Enochs{1], Cheatham,Enochs,Jenda[2] and Park|4],[5].

DEFINITION 1.1. An injective cover of a left A-module M is a linear
map ¢ : E — M with E injective such that:
(1) Any diagram
El

l

E % M

with E' injective can be completed.
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(2) The diagram
E

ps
¢
E— M
can be completed only by automorphism of E.

Note that ¢ : E — M is called an injective precover if ¢ satisfies (1)
only.

2. Injective Cover and Precover

PROPOSITION 2.1. If¢ : E — M is an injective cover and E' C ker(¢)
is an injective submodule of ker(¢), then E' = 0.

PROOF. Since E' C M is an injective submodule E’ is a direct sum-
mand of E. So let E' & § = F for some S. Consider the following
diagram

E'sS
o
N\
EesS % M

Define o : E'® S — E'@ S by o(z,y) = (0,y). We claim o makes the
diagram commutative. We have ¢(c(z,y)) = ¢(0,y) = ¢1(0) + ¢2(y) =
¢2(y) where ¢; = ¢|p and ¢2 = ¢|s and ¢(z,y) = $1(z)+¢2(y) = ¢2(¥)

since ¢1(z) = ¢1|p(z) = 0. So we have the following commutative
diagram
E'®S
¢
ol N\

Ess % M

But since ¢ is injective cover of M, ¢ is an automorphism. But o(z,y) =
(0,y) is an automorphism only if E’ = 0.
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PROPOSITION 2.2. Suppose o : E —+ M and o' : E' — M are both
injective covers of M, then there is an isomorphistu between E and E'.

Proo¥. Consider the following diagram
E

la

E' M

Since o' is an injective cover of M, there is a linear map f : £ — E'
such that ¢ = o' o f. Since ¢ is an injective cover of M, there is a linear
map g : E' — E such that o' =co0yg. Soo = (cog)of=00(gof)
Thus go f € AutE. And o’ = (0’0 flog=0'o(fog)so fog € AntE"
Hence, f : E — E' is an isomorphism.

THEOREM 2.3. If ¢ + E — M is an injective ~over and E' is a left
injective module then E & E' — M & E' is an injective cover.

PROOF. Since ¢ : E — M is an injective cover any diagram

E 2
\\
E % M

with E injective can be completed. So define o : E & E' — M = E' by
o(a,b) = (¢(a),b). Let E" be aleft injective module and let 7y« E” — M
and 75 : E" — E' be linear maps. Solet 7 : E" — MG E' be a linear map
by 7(z) = (r1(x), m2(x)), for x € E". Consider the following diagram

Ell

E¢E 5 MgE
Let 7, : E"” — E completes the following diagram
EII
™ l \1‘
&
—

E M
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Now define r : E — E & E' by r(z) = (r1(z),72(z)),z € E"”. Then
7(z) = (11(z),72(2)) and 0 0 7(z) = o(7i(2), 72(x)) = (¢( 1(7)), 72(x))-
But ¢(r1(z)) = m1(x) so (r1(z), 72(z)) = (¢(r1(x)), 2(z)). Thus we have

the following commutative diagram

EI/
.

LN

o

EaE 5 MaE

Now let h: E @ E' — E @ E’ be a linear map such that the following
diagram commutes

EsE'
) N
EsE % MagkE

Let h(a,b) = (f(a,b),g9(a,b)) = (
f: E@E’—»Eandg EGE —

~

1(a) + f2(b), g1(a) + g2(b)) where

by

fi:E—-E, f;:E - E

¢g1:E—E' ¢,:E - FE

are linear maps giving f and ¢ respectively. Then o(h(a,b)) = o(a,b).
But o(h(a,b)) = o(fi(a)+ f2(b), g1(a)+g2(b)) = (8(f1(a)+ f2(b), g1(a)+
92(b)) and o(a,b) = (¢(a),b). So (¢(fi(a) + f2(d)), g1(a) + g2(b)) =
(¢(a),b). Thus take b = 0 then gi(a) + ¢2(b) = 0, so g1(a) = 0, so
g2(b) = b, and &(fi(a)) = ¢(a). Therefore f; : E — E completes the
following diagram

E
(4]
il AN
E % M

Thus f; is an automorphism. So h(a,b) = (f(a,b).g(a,b)) = (fi1(a,b) +
f2(a,b),b). Now we claim h is an automorphism. Suppose h(a,b) = 0,

then (fi(a) + f2(b),5) = (0,0). So b = 0 implies fo(b) = 0 implies
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fi(a) = 0 implies @ = 0. Thus h is 1-1. Let (1,y) € E ¢ E'. Since
h(a,b) = (fi(a) + fa(b).b) let b = y then fi(a) + f2(b) = x. So let
a = fi'(x — f2(b)) since f, is an automorphism so & is onto. Therefore
h is an automorphism. Hence, we conclude that v : E & E' — M @ E'
18 an injective cover.

THEOREM 2.4. Suppose My, M, are left R-mcdules having injective
covers ¢y : Ey — My, ¢, : Ey — My. Then for any linear map f : M, —
M, there is a linear map g : E, — E, such that

(o

E 1 - AI 1
gl Lf
E, 4 M,

is commutative. If f is an isomorphism then so is ¢.

Proor. Consider the following diagram

E, 4 M,
Lr
E, % M,

Let 7 = f o ¢1 then 7 : E; — M, is a linear map. So there i1s a linear
map ¢ : £y — FE; such that 7 = ¢, 0 g since ¢, is an injective cover of
M,. Now we have the following commutative diagram

g

El g A’Il
gl L
D2
E2 — ]\JQ

Suppose f 1s an automorphism. Then we have the following commutative
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diagram
E] _0_1) le
gl L
E, B M,
B L
E, B M
Claim h o g € AutE;. Consider the following commutative diagram
Er 8 M
1l
hog l \ l id
E. 8 M

Since ¢ is an injective cover of M, the lower triangle can be completed
only by an automorphism. So we have hog € AutFE,. Similiarly we have
the following commutative diagram

E, B M

hl Lt

E. 5 M

gl )

E, 8 M

Claim g o h € AutE;. Consider the following commutative diagram
E, 8 M,
2
goh | N\, |id
E, B M

Since ¢, is an injective cover of My, the lower triangle can be completed
only by an automorphism. So we have g o h € AutE,. Hence, ¢ is an
automorphism.
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THEOREM 2.5. Suppose 0 : F' — M be an injective cover of M then
for an injective module F' and an isomorphism k : F' — F,0c 0k is an
injective cover of M.

PROOF. Consider the following diagram

FII

where t : F" — M is a linear map. Since o is an injective cover of M,
there is a linear map s : F" — F such that cos = solet 7: F" — F' be
linear map such that 7 = k~1os, then we have the following commutative
diagram

FII
8 h
LN N
k
r =z F - M

k-1

So we have h = (0 o k) o 7. Now consider the following diagram

FII

ook
LN

k
F' =% M

with 7 completing the above diagram. We claim r is an automorphism.
Consider the following diagram

F' S F

Tl \
F'F'5 FS M
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Let ¢ : F — F be a linear map such that ¢ = kor 0o k™!, then we have
the following commutative diagram

k

F 3 F
] Lo
o5 F
Since
o5 F
rl N

F 5% Fr 5 M

Thus a(¢(d)) = o(k(r(k71(b))) = o(k(k~1(b)) = o(b) for b € F. Thus
a(b) = o 0 ¢(b). So we have the following commutative diagram
F
ol N\
A

F M

and we also have the following commutative diagram

FF 5 F
] le
F 5% F 2% M

But since o is an injective cover of M, ¢ is an automorphism. But k is
an isomorphism, so 7 is an automorphism. Hence, o o k is an injective
cover of M.

EXAMPLE 2.6. Let D be a divisible group and G be an abelian group
and ¢ : D — G be a linear map. Then ¢(D) is a divisible subgroup of
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G. But G has a largest divisible subgroup D’. So &(D) C D' C G. Thus
consider the following diagram

Then there is a linear map pr|¢ : D — D’ that completes the above
diagram. And the following diagram

DI
N\

z

D' - @

can be completed only by identity map of D'. Hence, i : D' — G is an
injective cover of G.

EXAMPLE 2.7. Let R = Z and G = Z, then the only divisible (in-
jective) subgroup of Z is 0. So the zero map is an injective cover of

Z.

EXAMPLE 2.8. Let R = Z and G = @, the a largest divisible sub-
group of Q is @ itself. So identity map of @ is an injective cover of @.
In general given an abelian group G and a largest. divisible subgroup of
G. the inclusion map is an injective cover of G. For R a PID we have
the same argument.
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