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FIXED POINT THEOREMS FOR FUZZY
MAPPINGS AND APPLICATIONS

ByunG Soo LeE, YEOL JE CHO AND JONG SO0 JUNG

ABSTRACT. In this paper we obtain common fixed point theorems for
sequences of fuzzy mappings on Menger probabilistic metric spaces, in-
cluding common fixed point theorems for sequences of multi-valued map-
pings, which generalize and improve some results of Lee et al. [8] and
Chang [2].

0. Introduction

In [14], Sehgal and Bharucha-Reid showed the existence of the fixed
point for one-valued local contraction mappings on probabilistic metric
spaces. Later the existences of fixed points for raulti-valued mappings
in probabilistic metric spaces were obtained by Chang, Hadzic and oth-
ers [1, 3-6]. However, Pai and Veeramani’s work [10] seems to be the
first to establish a probabilistic analogue of Nadler’s Banach contraction
principle [9].

On the other hand, Heilpern [7] extended the Nadler’s principle to
the case of fuzzy mappings in 1981. His work seems to be the first
to establish a fuzzy analogue of Nadler’s principle. Most recently, Lee
et al.[8] defined a contractive fuzzy mapping on a probabilistic metric
space and presented some fixed point theorems for fuzzy mappings on
probabilistic metric spaces.

In this paper we obtain a generalized common fixed point theorem
for a sequence of fuzzy mappings on Menger probabilistic metric spaces.
Also we show that a sequence of closed-valued mappings on Menger
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probabilistic metric spaces has a common fixed point as corollary. Our
results in this paper generalize and improve Lee et al.’s [8] work, and
Chang’s results [2].

1. Preliminaries

Let (E,d) be a metric space. A fuzzy set A in E is a function from
E into [0,1]. If z € E, the function value A(z) :s called the grade of
membership of z in A. The a-level set of A, denoted by (A),, is defined
by (A)e = {z|A(z) > «} if @ € (0,1]. The collection of all fuzzy sets
A in E such that each A, is nonempty closed set in E is denoted by
W(FE) and C(E) denotes the collection of all nonempty closed subsets
of E. For A,B € W(E), we denote by A C B, iff 4(x) < B(z) for each
r € E. If T 1s a mapping from E into W(Y'), wher= Y is a metric space,
then T is called a fuzzy mapping. For each z € E we let {z} be a fuzzy
set with a membership function equals to a characteristic function of the
set {r}. dy denotes the Hausdorff metric induced by d as follows ;

du(A, B) = max{sup inf d(z,y),sup inf d(z,y)} for A, B € C(E)
r€AYEB r€EBYEA

and D the fuzzy-Hausdorff metric induced by d such that

D(A,B) = sup du((A)a,(B)a) for A,B € W(E).
a€(0,1]

For the sake of convenience, we recall some definit:ons, terms and nota-
tions in probabilistic metric spaces [1-3, 11 - 13].
Throughout this paper, let R = (~o00, +00), Rt = [0, +oc) and N the

set of all positive integers.

DEFINITION 1.1. A mapping F : R — R7 is called a distribution
function, if it is nondecreasing and left-continuous with inf F(¢) = 0 and
sup Fi(t) = 1.

In what follows we always denote by D% the set of all distribution
functions and by H the specific distribution function defined by

0, if t<0,

H(t) =
) {1, it t>0.
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DEFINITION 1.2. A probabilistic metric space (in short, a PM-space)
is an ordered pair ( F,3), where E is a nonempty set and $ is a mapping
from E x E into D*. We denote the distribution function $(z,y) by
F, , and F, ,(t) represents the value of F, , at i € R for each z,y € E.
The function F; , is assumed to satisfy the following conditions :

(PM-1) F; 4(t) =1for all ¢ >0ifandonly if ¢ =y ;

(PM-2) F, ,(0) =0 ;

(PM-3) F, 4(t) = Fy ,(t) forallt e R ;

(PM-4) if F; (t1) =1 and Fy .(ty) = 1, then Fy (¢t +t2) = 1.

DEFINITION 1.3. A mapping A : [0,1] x [0.1] — [0,1] is called a
t-norm, if it satisfies the following conditions : for any a,b,c,d € [0,1],

(T-1) A(a,1)=a;

(T-2) A(a,b) = A(b,a) ;

(T-3) A(e,d) > A(a,b)forc>aand d>b;

(T-4) A(A(a,b,),c) = Ala, A(b, ¢)).

DEFINITION 1.4. A Menger PM-space is a triplet (E,S,A), where
(E,S) is a PM-space and A is a t-norm satisfying the following triangle
mequality

F, .(ty +12) > A(F; (1), F, .(t2)) for all 2,y z € E and t;,1; > 0.

Schweizer and Sklar [11] have proved that if (E, 3, A) is a Menger
PM-space with a continuous t-norm A, then (£,3,A) is a Hausdorff

topological space in the topology 7 induced by the family of neighbor-
hoods :

{Up(e,\):p€e E, >0, X >0},

where

Up(e,\) ={z € E: Fy () >1— A}

DEFINITION 1.5. Let (E,S3,A) be a Menger PM-space with a con-
tinuous t-norm A. Let (z,)52; be any sequence in E. (z,)0%, is said
to be 7-convergent to z € E (we write z, -+ ), if for any given
e > 0 and A > 0, there exists a positive integzer N = N(e, A) such
that F, ,(e) >1— X whenever n > N.
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()52, C Eis called a 7-Cauchy sequence, if for any ¢ > 0 and A > 0,
there exists a positive integer N = N(e, ) such that F,_,, () > 1— A,
whenever n,m > N.

A Menger PM-space (E, 3, A) is said to be 7-complete, if each 7-
Cauchy sequence in F is 7-convergent to some point in E.

From [11] we have the following lemma needed.

LEMMA 1.1. If(z,)52, converges to z in a probabilistic metric space,
then (Fy z,)a2, converges to Fy , = H, i.e., for every t > 0(F, . (1)),
converges to Fy ,(t), and conversely.

DEFINTION 1.6 [2]. Let (E,3,A) be a Menger FM-space and A, B €
C(E), z € E, then the probabilistic distance from z to A, and the
probabilistic distance from A to B is defined respectively as follows ;

F; a(t) =supsup Fy 4(s),
s<t yeA
(1.1)

Fa p(t) =sup A(inf sup F; 4(s), inf sup Fy ,(s)), t€R.
" s<t €A ycRB ¥€B zepa

We can easily obtain the following lemma by Definitions 1.3 and 1.6.

LEMMA 1.2. (1) The probabilistic distances Fa g(t) and F, a(t) are
left-contniuous and nondecreasing.

(2) For any A,B € C(E) and r € A,

F. p(t) > Fqp(t), t>0.

LEMMA 1.3 [2]. Let (E,S,A) be a Menger PM-space and A a left-
continuous t-norm. If A € C(F) and z,y € E, then we have the following

(1) Fy a(t)=1forallt > 0 if and only if z € A,

(2) Fx,A(tl + tz) Z A(Fx,y(tl),Fy,A(tQ)) fOI' &H t1 ,tg Z 0.
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DEFINITION 1.7 [8]. Let (E,S,A) be a Menger PM-space, 4,B €
W(E) and {z} C E, then the fuzzy probabilistic distance from {z} to 4,
and the fuzzy probabilistic distance from A to B are defined respectively
as follows ;

Firy4(t) = aé?ofl] Fya),(t)

Fa(t) =aé1(10fl]F(A)u,(B)a(t), t>0.

LEMMA 1.4. For any A,B € W(E) and {z} C A, we have

Fi2y,B(t) > Fap(t), t2>1.

PROOF. Since {z} C A, z € (A), for each a € (0,1]. Thus by Lemma
1.2, we have

Fr ). (1) 2 Flaye (3. (1)
> F4 p(t) for each a € (0, 1] and ¢t > 0.

Hence
Fy, t)= inf F,
{ }’B( ) aé?ﬂ,l] ’(B)"‘( )
2F ). (8. ()
>F,4 p(t), t>0.

LEMMA 1.5 [13]. Let ¢ :[0,+00) — [0,4+00) be a strictly increasing
function such that ¢(0) = 0 and lim;_o ¢(t) == +o00. If we define a
function v : [0, +00) — [0,+00) by

0, t=0,

¢(t):{inf{s>0:¢(s)>t} , t>0,

then 1 is continuous and nondecreasing.
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DEFINITION 1.8. We say that a function ¢ : [0,+00) — [0,+oc)
satisfies the condition (@) if it is a strictly increasing and left-continuous
function such that ¢(0) = 0, limy—4o #(¢) = +oc and Y oo ¢™(t) <
+oo for all t > 0.

LEMMA 1.6 [3]. Let ¢ : [0,400) — [0,400) ratisfy the condition
(®) and let ¢ be a function defined as Lemma 1.5. Then we have the
following:

(1) ¢(t) <t forallt >0,

(2) $(¥(#)) < t and ¥((1)) =t for all t > 0,

(3) ¥(t) >t forallt >0,

(4) limy oo Y™ (t) = 400 for all t > 0.

2. Main results

Now we obtain our main result, a generalized common fixed point
theorem for a sequence of fuzzy mappings on Menger PM-spaces.

THEOREM 2.1. Let (E, 3, A) be a r-complete Menger PM-space with
a left-continuous t-norm A, and (T;)%2, : E — W(E) a sequence of fuzzy
mappings. Suppose that there exists a function ¢ : [0, 4+00) — [0, +oc)
satisfying the condition (®) such that for any i,j € N, and any r,y € E,
(2.1)  FPra1yy(¢(1) = min{F; y(1), Fr (1), (1), Fy (13, (1) 1,1 > 0.

Suppose further that for every z,y € E and {u, | C T;z, there exists
vy} C T,y such that
y ]

(22) Fux,vy (f) _ F’I‘,—r,']} y(t)v t 2 0)
then there exists an =, € FE such that

{z.} C Tiz,, i€N.

Proor. For any given zg € E we take z; € E such that {z,} C Ty,
and by (2.2) take x, € E such that {x,} C Tyx, satisfying

FI],Tz(t) - FT1;L'0,'F2.’E1(‘t:)3 t Z 0



Fixed point theorems for fuzzy mappings and applications 95
Similarly we take x3 € E such that {z3} C T3z, satisfying
Flzvia(t) = FT211,T312<t)’ t2>0.

Continuing this process, we obtain a sequence (z, )52, C E satisfying
(1) {zn} C Thzpn-1 (e, x4 € (Thzn-1)1) ;
(11) Frn,rn+1(t) = FTnIn—l,Tn+1$n (t)v t 2> 0.
On the other hand, by the hypothesis we obtain the following condition
for each n € N.
(111) FT Zn-1,T n+1xn(¢(t))

> min{Fr, e, (t), Fop i (Tazn_1): (8 Foy (Tgrzan )1t =0
Define a function ¢ : [0, +00) — [0, +00) by

dt)_{o, it =0
() = inf{s > 0:¢(s) >t}, >0,

then we have the following condition (iv) from the condition (iii) and
Lemma 1.6,

(IV) FTnIn—l,Tn+1In(t) 2 FTnIn—\-,Tn-}-lIn(qb(d)(t)))

2 min{FIn—l ,rn(w(t))a Fxn_l,(Tnzn_1)1 (w(t ')7 an,(Tn_{,;rn)l (d’(t))}’
t > 0.

Now we prove that (z,)52, is a 7-Cauchy sequence in (E,F,A). In
fact, since , € (Thz,—1); for each n € N, by Lemma 1.4, from the
conditions (ii) and (iv) we can obtain the following ;

Frprnin (1)
=Fr 2, 1. Taprza(t)
>min{Fy,_, 2, (¥(1), Fr\ ) (Tazn-y) ($(8))s Frp (Togrza) (¥(E))}
2 min{Fz,_, ,(¥(1)), F{xn D Tnzn1 (P(8) Flz ), Tz (¥(1))}
>min{Fs,_, o, (P(8)), Fr iz Trznr (0()s FTuzn 1 Tugy2a ($(1))}
=min{F,,_, 2, ((t)), Fz,_ m"( (1)), Fapznya (0(1))} £ 20.

Since F;, .., (t) is nondecreasing, by Lemma 1.6

Frprnps(8) 2 Fop 2 ($(2), 120,
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Thus we obtain the following inequality

Frnzan () 2 Fop oy (97(1)), £20,

for the sequence (z, )32 ,.
On the other hand, for any positive integers n, m and ¢ > 0 we have

Fl‘n »Tndm (t)

2 [Frurenn{ G = )th B ()]
(=20} Frennn ()]

A )t
& [Frsssrras{ (5 = )} Fsinen (0]
A 1
[P (877 = )0} B
2a [Fn o (1- 1)0) )4
8 [ {on (1= DO} 2 [Frossrnn{ (& = 1) B (9]

[

N O (D) RN C ()Y

 [From {u (- 1)),

a8 [P { (55 - ) P ()] ]
28 [ {97 (1= D) b [From o (1 1))

 [Fron {om((1- 1)9),

a[ s [mnndor (= DO F o (- Lo}]] ] oo
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Letting n — oo, for any m we have

lim Fp .. ..(t)=1, t>0.

This implies that (z,)%2, is a Cauchy sequence it E. Let z,, — z, € E.
Next we prove that {z,} is a common fixed point, i.e.,

{z.} C ﬂ Tiz,.
=1

In fact, for {z,41} C Tht12, and T;z, for each fixed 7 € N, we have

Foppr(Tiza) (1)
2F (441}, iz, (1)
>Fr, o0, Tizd (1)
2min{Fz, o, (Y1), Fep (Tnirzn) (V1) Fau (Tizap ($(1))}
2min{Fe, o, (¥(1)), Fiz,y Toprzn (¥ (), Fo, (Tiza) (¥(2))}
2 min{an,r. (¥(t)), Fr,z,_, Tnt1 xn(d)(t))’ Fr*,(ﬂz,)x (w(t))}
=min{F;, o, (¥(1), Fr, 20 (¥(1)), Fr. ¢riz), (0(1))}
2min{F, . (Y(1)), Fro,e, (0" (1)), Fo, (Tiz), (¥(1))].

(2.3)

Letting n — oo and taking limit inferior in (2.3) we have by Lemma 1.1
and Lemma 1.6

n

(2'4) lim an+1,(7}z,)1(t) Z quy(ﬂxt)l(z/)(t))'

On the other hand

Fou iz (0(8) 2 A{Fz, 204, (8), Fryy (Tiz), (0(2) — 8)}, 6> 0.

Taking limit superior we have

Fo iz (4(1) 2 Tm Fo o\ (100, ($(2) = 6),  6>0.
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By the arbitrariness of § > 0, we have
(25) FI.,(’nIt)l (z/)(t)) 2 ni—i:nl F1'11+1 1(’11'1'")2 (¢,(t))

Combining (2.4) and (2.5) we have

nh?HSlo o (Tiz, (9(1)) > nl'-i%o Frr (120, (1)
2F,, (Tiza), (¥(1))
> 7'1_131:10 e (T2 (W(1))
> 17531—30 Fopii (T 20, (B):
Therefore
(2.6) D Fo (12, ($() = Fo, (2., (4(2)), and
(2.7) Jm L (heo (B) = Foy (120, (0(1)).

By the arbitrariness of ¢, from (2.6) we have
nli_{r;o Frpi Tz () = Fo(12,), (1), £20.

Therefore from (2.7) we have

'Fr. ATizan (f) :FT* ATiza (d)(f))
:Fz, ATize (Uwz(t) !

=F,, (e, (¥7().
Letting m — oo, we have
Fz,,(T,'a:.)l(t)zla tZO

This shows that z, € (Tiz.); by Lemma 1.3, iec., {z.} C Tiz,,: =
1,2, - -. This completes the proof.
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THEOREM 2.2. Let (E, &, A) be a 7-complete Menger PM-space with
a left-continuous t-norm A satisfying AN(t,t) > t,7 € [0,1]. Let (T3)2, :
E — W(E) be a sequence of fuzzy mappings. Suppose that there exists
a function ¢ : [0, 400) — [0, +00) satisfying the condition (®) such that
for any 1,7 € N and any z,y € E,
(2.8)

Frio,1y4((1))
2 min {F-‘ny(t)’ Fz,(T-‘Ih(t)’ Fy,(Tj yh (t)’ FI,('I} ¥ (2t)> Fy,(T,-z)l (2t)} ’
t>0.

Suppose further that for every =,y € E and {u,} C Tiz, there exists a
{vy} C Tjy such that

Fux,v" (t) = FT,'J:,T}-y(t), t Z i),

Then there exists an z. € E such that {z.} C ﬂ?;l TiTy.

PROOF. From the inequality (2.8) we have

Frie,1;4(8(1))
2 min [Ff,y(t)7 F-‘B,(T-'I)l(t)v Fy,(Tj ¥ (t)7
A{Fz,y(t)’ Fy,(Tj y)1(t)}a A{Fr,y(t)a Fi (Tio), (t)}] .

By A(t,t) > t,t € [0,1], the condition (2.1) holds. Therefore (7;):2, has
a common fixed point.

Letting ¢(t) = kt, 0 < k < 1, in Theorem 2.1 and Theorem 2.2, we
have the following two common fixed point theorems, Theorem 2.3 and
Theorem 2.4.

THEOREM 2.3. Let (E,S, A) be a 7-complete Menger PM-space with
a left-continuous t-norm A, and (1;)2, : E — W(E) a sequence of fuzzy
mappings. Suppose that there exists a constant k € (0,1) such that for
any 1,7 € N, and any z,y € F,

Fria 1y (kt) 2 min{ Fy y(8), Fo (1i2), () Fy (739, (D)}, 0 2 0.
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Suppose further that for every z,y € E and {u,} C Tz, there exists
{vy} C T;y such that

Fux,v, (t) = F’I}ar,'[}y(t)a t >0
Then there exists an x. € E such that
{z.«} C Tiz,, 1 €N,
THEOREM 2.4. Let (E, 3, AA) be a T-complete Menger PM-space with
a left-continuous t-norm A satisfying A(t,t) > t,t € [0,1). Let (T;)2, :

E — W(FE) be a sequence of fuzzy mappings. Suppose that there exists
a constant k € (0,1) such that for any i,j € N and any =,y € E,

FTI.x’f]}y(kt)
2 min{FI,y(t), Fx,(T.—r)l(t)a Fy,(7}y)1 (t)s Fz,(TJ ¥h iizt)a Fy,(Tgrh (Qt)}
t > 0.

Suppose further that for every r,y € E and {u,} C Tz, there exists
{vy} C T}y such that

Fuo, (1) = Friomy(t), t2>C
Then there exists an &, € E such that {z.} C i, Tiz«.
Putting 1 = j in Theorem 2.1, Theorem 2.2, Theorem 2.3 and Theo-

rem 2.4, we obtain the following fixed point theoreras for fuzzy mappings
as corollaries.

THEOREM 2.5. Let (E, S, A) be a 7-complete Menger PM-space with
a left-continuous t-norm A, and T : E — W(FE) a fuzzy mapping. Sup-
pose that there exists a function ¢ : [0, +00) — [0, +00) satisfving the
condition (®) such that for any z,y € E,

FTLTy(é(t)) > nlin{Fz.y(t)r FI,(TI)l(t)3 Fy,( Ty (t)}ﬂf > 0.

Suppose further that for every z,y € E and {u,} C Tz, there exists
{vy} C Ty such that

Fupw,(t) = Fromy(t), t=0
Then there exists an z, € E such that

{z.} C Tr,.
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THEOREM 2.6. Let (E, S, A) be a 7-complete Menger PM-space with
a left continuous t-norm A satisfying A(t,t) > t, t € [0,1], and T :
E — W(E) a fuzzy mapping. Suppose that there exists a function
¢ : [0,+00) — [0,+00) satisfying the condition (®) such that for any
r,y € E

Fraz,ry(¢(1))

Z min{Fx’y(t), Fz,(T.r)1 (t), Fy,(Tyh (t), .Fg,:,(Ty)1 (2t), F, AT1), (2t)},
t>0.

Suppose further that for every z,y € E and {u,} C Tz, there exists
{vy} C Ty such that

Fu, 0, (t) = Froy(t), t>0.
Then there exists an z. € E such that

{z.} C Txz..

THEOREM 2.7. Let (E,S, A) be a T-complete Menger PM-space with
a left-continuous t-norm A, and T : E — W(E) a fuzzy mapping. Sup-
pose that there exists a constant k € (0,1) such that for any r,y € E,

Fro,ry(kt) > min{F; (), Fz (12, (1), Fy ), (8)}, 1 > 0.

Suppose further that for every z,y € E and {u,} C Tx, there exists
{vy} C Ty such that

Fur,(t) = Prazy(t), 20,
Then there exists an r. € E such that

{z.} C Tz,.
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THEOREM 2.8. Let (E,F,A) be ar-complete Menger PM-space with
a left-continuous t-norm A satisfying A(t,t) > t,t € [0,1], and T : E —
W (E) a fuzzy mapping. Suppose that there exists a constant k € (0,1)
such that for any z,y € E
F'I‘I,Ty(_ k“
2 Ini“{FI-y(f)v FI,('TL)l (t)a Fy,(T‘y)] (f)’ Fz,(Ty)l (Zt)u Fy,('I'I)l (Qt)}~
t > 0.

Suppose further that for every x,y € E and {u,} C Tz, there exists
{vy} C Ty such that

Fuz,vy (1) - Fl“;:,?'y(_t)a t > 0
Then there exists an z, € E such that
{;If*} C Tz,

From Theorem 2.5 we have the following fixed point theorem.

THEOREM 2.9. Let (E, S, A) be a r-complete Menger PM-space with
a left-continuous t-norm A, and T : E — W(E') a fuzzy mapping. Sup-
pose that there is a function ¢ : [0, +00) — [0, +0o0) satisfying the con-
dition (®) such that for any =,y € E,

F’T.r,']“y(d’(t)) > Ff,y(t)s t > (.

Suppose further that for every xz,y € E and {u,} C Tz, there exists
{vy} € Ty such that

Fur,vy(t‘) = FTI,'Ty(t)-: t > 0
Then there exists an . € E such that

{e.} C Tx..

Now we obtain the following common fixed pont theorem for a se-
quence of nonempty closed-valued mappings (f;)2, : £ — C(E) in
PM-spaces. This theorem generalizes Corollary 2.5 in [8].
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CoROLLARY 2.10. Let (E,S,A) be a 7-complete Menger PM-space
with a left-continuous t-norm A and (f;)2, : E -+ C(E) a sequence of
nonempty closed-valued mappings. Suppose that there exists a function
¢ : [0,+00) — [0,+00) satisfying the condition (®) such that for any
t,) € Nand any z,y € E,

Ff;z,ij(¢(t)) 2 min{FI,y(t), Fz,faz(t)v F, ,f,‘y(t)}-

Suppose further that for any z,y € E and u, € f;a, there exists vy € fiy
such that for every t > 0

Fua:yvy (t) = Ffizvij(t)'
Then there exists an z, € E such that

T4 € fix,, 1€N.

PROOF. Define T;: E — W(E) by T;z = X fiz, then (Tiz), = fiz,i €
N. Thus we have
Fﬂz,ﬂy(¢(t)) :Fx/,-z,x;’-,,(¢(t))

= aé?ﬂf,]] Exjix)a a(le y"a (¢(t))

= inf Fr, . (d(t
aé?(),]] fi ,f_,y(gﬁ( ))

:ngz,ij(¢(t))’ t Z 0.

Hence

(1) Fﬂr,ij(‘b(t)) = Ffiz,ij(¢(t))
2 min{Fy y(t), Fy,f,2(t), F, St}
= min{FI,y(t)a Fx,(T;z)l(f)’ Fy,(T,' y)l(t)}'
(i1) Fu.n, (1) = Fpo54(t) = Friery(t), t>0.
(i) A{uz} Cxpe = Tiz and {vy} C x5y = Tyy.
From Theorem 2.1 there exists an z, € E such that {z.} C Tiz. = xf.z.,

that is,
Ty € fize, 1 EN.
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Putting ¢(t) = kt, 0 < k < 1 in Corollary 2.10, we have the following
result which is also a direct consequence of Theorem 2.3 to the case
of sequences of nonempty closed-valued mappings (f;)2, : E — C(E).
This theorem generalizes and improves Theorem 2.1 in [2] and Corollary
2.5 in [8].

COROLLARY 2.11. Let (E,S3,A) be a 7-complete Menger PM-space
with a left-continuous t-norm A and (f;)2, : E — C(E) a sequence of
nonempty closed-valued mappings. Suppose that there exists a constant
k € (0,1) such that for any z,y € E

Ff;x,_ﬁ,»y(kt) 2 min{FI‘y(ﬁt‘), F.t,f.»z(t)s Fu,ij(i)}'

Suppose further that for any r,y € E and u; € fix, there exists vy, € f;y
such that for every t > 0

Fuz,vy (1) = Ffex,ij(t)-

Then (f;);2, has a common fixed point.

Putting ¢ = j in Corollary 2.10, we have the following theorem which
generalizes Corollary 2.6 in [8].

COROLLARY 2.12. Let (E,3,A) be a T-complete Menger PM-space
with a left-continuous t-norm A and f : E — C(E a nonempty closed-
valued mapping. Suppose that there exists a function ¢ : [0, +oc) —
[0, 4+00) satisfying the condition (®) such that for any x,y € E

Fro py(0(1)) 2 min{ Fy (1), Fy (1), Fy gy(t)}.

Suppose further that for any z,y € E and u, € fz. there exists vy € fy
such that for every ¢t > ()

Fux-,vy(i) = Ffz,fy(t)>

then f has a fixed point.
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3. Applications

In this section we study the existence of fixed points for fuzzy map-
pings in a metric space ( E, d) using the results in section 2, and then we
obtain similar result for multi-valued mappings as corollary.

THEOREM 3.1. Let (E,d) be a complete metric space and (T;)2, a
sequence of fuzzy mappings from (E,d) to (W(E),D). Suppose that
there exists a function ¢ : [0, +00) — [0, +00) satisfying the condition
(®) such that for any i,j € Nand z,y € E

D(T‘l‘T’T]y) S ¢_(;l max{d(m,y),d(a:,(Tim)l),d(y, (ij)l)}v t > 0.

Suppose further that for any z,y € E and u, € Tz, there exists vy € Ty
such that for every t > 0

Fuz »Vy (t) = FTix;Tj y(t)

Then there exists an z, € E such that

{z.} C ﬁ Tiz..
=1

PROOF. First we define $: E x E — Dt by
(3.2) Fpu(t) = H(t —d(z,y)), z,y€E.
Then the space (E,S,min) with a t-norm A =: min is a T-complete
Menger PM-space and the topology induced by the metric d coincides
with the topology 7. And it is easily proved that

Fok(t)=H(t—d(z,K)), z€E, KeC(E)

and

Fyo(t)= H(t - du(K,C)), K, C€C(E).
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Then for any z,y € E, and 7,7 € N we have

Friz1y(6(t)) = iﬂf ]F(T.-z)a,(T} na(¢(1))
= 1nf H(é(t) — du((Tiz)a, (Tjy) +)

@€(0,1]
=H(¢(t) = sup dy((Tiz)a, (Tjy).))
@€(0,1]
=H(4(t) — D(Tix, T;y))
¢(t)

>H[g(t) ~ —— max{d(z,y),d(z,(Tsz)1), d(y, (Tjy)1)}]
=H[t — max{d(z,y), d(z,(Tiz)1),dly, (Tjy)1)}]
—mm{FI y(t 2 (Tiz) t) F (T yh _t)}, t > 0.

Thus Theorem 3.1 follows from Theorem 2.1 inmediately.

COROLLARY 3.2. Let (E,d) be a complete metr:c space and (fi)z
(E,d) = (C(E),dy) a sequence of multi-valued mappings. Suppose that
there exists a function ¢ : [0,+00) — [0, +0c) satisfying the condition
(®) such that for any i,j € N and any r,y € E,

¢()

du(fiz, f39) < 2 max{d(z,y),d(z, fiz),d(u, f;y)},t > 0.

Suppose further that for u, € fix, there exists vy € f;y such that for
every t > 0,

Fup v, (1) = Fr0 14(1).

Then there exists an z, € E such that
oC
T, € ﬂ T;z..
=1

PROOF. Define T; : (E,d) — (W(E),D) by Tiz = xj,, for all i € N.



Fixed point theorems for fuzzy mappings and applications 107

Then for any z,y € E,

D(Tix,Tjy) =D(X .z, X5;9)

= sup du((Xfiz)er (Xfy)a)
o €(0,1]

=dy(fiz, f;y)

< maxfd(e,y), dla, fiz), d(y, f39)

D o {d(z, ), dCa (T ), d v, (T} £ 0

Therefore by Theorem 3.1 there exists a point z, € E such that

N,

m

{z.} C Tyxe = Xz, foralle

ie., z, € fix, forallz € N.

Remark. (i) Theorem 3.1 and Corollary 3.2 generalizes Theorem

3.1 and Corollary 3.2 in [8] respectively.

(ii) Putting ¢(¢) = kt, 0 < k < 1, in Theorem 3.1 and Corollary 3.2,

we also can obtain other common fixed point theorems.
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