A KOHN-NIRENBERG EXAMPLE USING LOWER DEGREE

JEONG SEON YI

ABSTRACT. We will construct polynomials of degree 6 in z and \overline{z} on \mathbb{C}^2 which gives, via its coefficient β as a parameter, a family of pseudoconvex domains Ω_{β} in \mathbb{C}^2 with the origin being a boundary point, and show that the domains Ω_{β} has no peak functions of class c^1 at the origin and has no holomorphic support functions for $1 \leq \beta < \frac{9}{5}$.

1. Introduction

Let us consider a plurisubharmonic function on \mathbb{C}^2

(1)
$$\rho_1(z, w) = Re(w) + p_1(z),$$

where $p_1(z) = |z|^8 + \frac{15}{7}|z|^2 Re z^6$ for $(z, w) \in \mathbb{C}^2$. Then the pseudoconvex domain $\Omega \subset \mathbb{C}^2$ defined by

$$\Omega = \{ (z, w) \in \mathbb{C}^2 \mid \rho_1(z, w) < 0 \}$$

gives the well-known Kohn-Nirenberg example on \mathbb{C}^2 [3]; the domain Ω is Levi pseudoconvex but does not have a holomorphic support function at the origin. In particular, the domain Ω has no peak function of class C^1 at the origin [1].

Recall that for a domain $\Omega \subset \mathbb{C}^n$ and $p \in \partial \Omega$, we say that p has a holomorphic support function for the domain Ω provided that there is

Received January 4, 1995.

¹⁹⁹¹ AMS Subject Classification: 93C32.

Key words and phrases: pseudoconvex, strictly pseudoconvex domains, holomorphic support functions, peak functions.

The author was supported by Hyosung Women's University.

a neighbourhood U_p of p and a holomorphic function $f_p:U_p\to\mathbb{C}$ such that

$$\{z \in U_p \mid f_p(z) = 0\} \cap \overline{\Omega} = \{p\}.$$

Now let

(2)
$$k(z) = Re z + p_1(z).$$

Then k(z) is obviously subharmonic, but not convex near 0 in \mathbb{C} along the imagiary axis in \mathbb{C} . Moreover it is easy to see that the function f on \mathbb{C} defined by

$$f(z) = Re(\alpha z + \beta z^n), \quad \alpha, \beta \in \mathbb{C}$$

is not convex near 0 for any $\alpha, \beta \neq 0$, and $n \geq 2$ along the line generated by the *n*-th root of $-\overline{\beta}/|\beta|$.

2. Main propositions

One property of the function k near 0 is as following

LEMMA 1. There is no holomorphic change of coordinates g nea 0 satisfying g(0) = 0, g'(0) = 1, and $k \circ g(z)$ is convex at 0.

PROOF. Suppose there is such a function g and consider the Talor expansion of $k \circ g$ at 0. Let

$$g(z) = \sum_{n=1}^{\infty} c_n z^n, \quad 1 = 1.$$

Successive appliction of the last fact mentioned above shows

$$k \circ g(z) = Re(z + c_8 z^8) + |z|^8 - \frac{16}{7} Re(z^7 \overline{z}) + O(|z|^9).$$

When z is real, we get $Re c_8 \ge \frac{9}{7}$ by convexity at 0. To get a contradiction, let $z = re^{i\frac{3\pi}{8}}$, $r \ge 0$. Hence

$$k \circ g(z) = Re z + \{-Re c_8 + 1 - \frac{16}{7} Re e^{i\frac{\pi}{4}}\} r^8 + O(r^9).$$

So $k \circ g$ is not convex at 0 since the coefficient of r^8 is negative. This completes the proof.

Now let

(3)
$$h(z) = Re z + |z|^4 - \alpha |z|^2 Re z^2, \quad \alpha \in \mathbb{C}.$$

We can choose $\alpha = \frac{4}{3}$ for h to be subharmonic. Then the Laplacian of h is identically zero along the real axis, and h can be convexfied by the holomorphic function $g(z) = z + \frac{1}{3}z^4$. Suppose

(4)
$$r(z) = Re z + |z|^6 - \alpha (z^5 \overline{z} + \overline{z}^5 z).$$

We can choose $\alpha = \frac{9}{10}$ to make r subharmonic, which implies that r is not convex at 0 along the real axis.

LEMMA 2. There is no holomorphic change of coordinates g such that g(0) = 0, g'(0) = 1, and $r \circ g(z)$ is convex at 0.

PROOF. Assume the existence of such a holomorphic change g of coordinate and consider the Taylor expansion of $r \circ g$ near 0. Let

$$g(z) = \sum_{n=1}^{\infty} c_n z^n, \quad c_1 = 1.$$

 $_{
m Then}$

$$r \circ g(z) = Re(z + c_6 z^6) + |z|^6 - \frac{5}{|z|^2} Re z^4 + O(|z|^7).$$

Hence the coefficient of c_6 of z^6 in the Taylor expansion of r(g(z)) is such that $Re c_6 \geq \frac{4}{5}$ along the real axis and $Re c_6 \leq > -\frac{4}{5}$ along the imaginary axis by the convexity of $r \circ g$. Thus r is not convexifiable at 0.

Let

(5)
$$\rho_2(z, w) = Re(w) + p_2(z), \quad p_2(z) = \beta |z|^6 - \frac{9}{5} |z|^2 Re z^4, \quad \beta \ge 1$$

and a domain Ω_{β} in \mathbb{C}^2 given by

$$\Omega_{\beta} = \{ (z, w) \in \mathbb{C}^2 \mid \rho_2 < 0 \}.$$

Clearly ρ_2 is C^2 -plurisubharmonic in Ω_{β} as a sum of two C^2 -subharmonic functions on \mathbb{C} . Hence Ω_{β} is pseudoconvex. It is strictly pseudoconvex at every boundary point except for the line : z = 0, Re w = 0.

REMARK. (1) By adding $|zw|^2$ ($|z|^2 + |w|^2$, resp.) to the plurisub-harmonic function $\rho_2(z, w)$, we obtain a strictly pseudoconvex domain except at the origin where it is pseudoconvex (a strictly pseudoconvex domain, resp.)

(2) The domain Ω_{β} has no peak functions at 0 that extends to be holomorphic in a neighborhood of 0 (for if f were a peak function, then f(z) - 1 would be a holomorphic support function at 0.)

The following Proposition shows that the pseudoconvex domains Ω_{β} has no C^1 peak functions at the origin.

PROPOSITION 3. For $1 \leq \beta < \frac{9}{5}$, let U_{β} be a neighborhood of $0 \in \partial\Omega_{\beta}$. Then there exists no function $f \in H(\Omega_{\beta} \cap U_{\beta}) \cap c^{1}(\overline{\Omega}_{\beta} \cap U_{\beta})$ so that f(0) = 1 and |f| < 1 on $\overline{\Omega}_{\beta} \cap U_{\beta} \setminus \{0\}$.

PROOF. Assume there exist such functions f and let $h(z,w)=Re\ f(z,w)-1$. Then $\alpha:=\frac{\partial h}{\partial n}(0)>0$ by the Hopf lemma. If $\epsilon>0$, there is a neighborhood $U_{\epsilon}(0)$ of 0 such that

$$\alpha - \epsilon < \frac{\partial h}{\partial n}(z, w) < \alpha + \epsilon$$
 whenever $(z, w) \in U_{\epsilon}(0)$.

For u < 0, let

$$\Delta_u = \{ (z, u) \mid |z| < \sqrt[6]{5|u|/(5\beta + 9)} \}.$$

Then $\Delta_u \subset \Omega$.

Notice that if $(z, u) \in \Delta_u$ and $z^4 > 0$ we have $(z, t) \in \overline{\Omega}_{\beta}$ for $u \le t \le (\frac{9}{5} - \beta)|z|^6$. Now follow the idea of the proof in [4, p. 123] to establish the following harmonic function h on D satisfying

(i)
$$h(0) > -\alpha$$

(ii)
$$h(\tilde{z}) \le -\alpha(1-|\tilde{z}|^6)$$

(iii)
$$h(\tilde{z}) \le -\alpha \left(1 - \frac{5\beta - 9}{5\beta + 9} |\tilde{z}|^6\right) \quad \text{whenever} \quad |\tilde{z}|^4 > 0$$

where $\tilde{z} := z / \sqrt[6]{5|u|/(5\beta + 9)}$.

Let

$$g(\tilde{z}) = (5\beta + 9)\frac{h(\tilde{z}) + \alpha}{\alpha}.$$

then g is harmonic on the unit disc D in \mathbb{C} , g(0) = 0, $g(\tilde{z}) \leq (5\beta + 9)|\tilde{z}|^6$, and $g(\tilde{z}) \leq (5\beta - 9)|\tilde{z}|^6$ if $\tilde{z}^4 > 0$. By the harmonicity of g, there exists a holomorphic function F such that Re F = g and F(0) = 0. Then

$$F(\tilde{z}) = c\tilde{z}^l + O(|\tilde{z}|^{l+1}).$$

Since $g(\tilde{z}) \leq (5\beta + 9)|\tilde{z}|^6$ and $g(\tilde{z}) \leq (5\beta - 9)|\tilde{z}|^6 \leq 0$ when $\tilde{z}^4 > 0$ imply l = 6 and $c \neq 0$.

If $\tilde{z}_n = re^{i\frac{n\pi}{4}}$, n = 0, 2, then $\tilde{z}_n^4 = r^4 > 0$ and

$$g(\tilde{z}_n) = \operatorname{Re} F(\tilde{z}_n) = r^6 \operatorname{Re} \operatorname{ce}^{i\frac{3n\pi}{2}} + O(r^7).$$

Hence

$$g(\tilde{z}_1) + g(\tilde{z}_2) = r^6 Re c(1 + e^{i3\pi}) + O(r^7) = O(r^7),$$

which contradicts the fact that $g(\tilde{z}) \leq (5\beta - 9)|\hat{z}|^6$ when $\tilde{z}^4 > 0$. This completes the proof.

The following Proposition gives us another Kohn-Nirenberg example in \mathbb{C}^2 given by a polynomial defining function whose degree in z and \overline{z} is 6 and so lower than that of the defining function for the Kohn-Nirenberg example.

Proposition 4. Let

$$\rho_3(z, w) = Re \, w + \beta |z|^6 - \frac{9}{5} |z|^2 Re \, z^4, \quad \beta \in \mathbb{R}.$$

and the pseudoconvex domain Ω_{β} in \mathbb{C}^2 defined by $\rho_3(z,w) < 0$. Then

- (1) If $\beta \geq \frac{9}{5}$, Ω_{β} has a holomorphic support function at 0.
- (2) If $1 \leq \beta < \frac{9}{5}$, Ω_{β} has no holomorphic support function at 0.

REMARK. When $\beta < 1$, the Levi-form of ρ_3 at (z, w) with Re w = 0 = Im z, $Re z \neq 0$ is strictly negative if |z| is small.

PROOF. Let $T = \{(z, w) \in \mathbb{C}^2 \mid w = z^8\}$. It suffices to show that T is a holomorphic support manifold at 0. Let $z = re^{i\theta}$ with r > 0. Then

$$\rho_3(z, z^8) = 2r^8 \cos^2 4\theta - r^8 + r^6 (\beta - \frac{9}{5} \cos 4\theta).$$

If $\cos 4\theta < -\frac{\sqrt{2}}{2}$, we have $\rho_3(z,w) \ge 2r^8 \cos^2 4\theta - r^8 > 0$ for all $\beta \ge \frac{9}{5}$. On the other hand, if $\cos 4\theta \ge -\frac{\sqrt{2}}{2}$, then $\rho_3(z,z^8) \ge -r^8 + r^6(\beta - \frac{9}{5}\cos 4\theta) > 0$ for small r > 0 if $\beta > \frac{9}{5}$.

When $\beta = \frac{9}{5}$; suppose $\cos 4\theta \neq 1$, then

$$\rho_3(z, z^8) > -r^8 + r^6(\beta - \frac{9}{5}\cos 4\theta) > 0.$$

If $\cos 4\theta = 1$, $\rho_3(z, z^8) > r^8 > 0$. Hence (1) holds.

(2) When the complex tangent space T_0 T has a component in the z-direction;

M can be written as a graph $\{w = \phi(z)\}$ over the z-axis. In particular, suppose $\phi(z) = \alpha z^6 + O(|z|^7)$ where $\alpha \neq 0$. Let $z_1 = r$ and $z_2 = ir$, r > 0. Then

$$\rho_3(z_1, w_1) + \rho_3(z_2, w_2) = 2(\beta - \frac{9}{5})r^6 + O(r^7) < 0,$$

which contradicts the fact that $(z_n, w_n) \in \Omega_{\beta}$ for n = 1, 2 and $T \cap \overline{\Omega}_{\beta} = \{0\}$. All other cases when $\phi(z) = \alpha z^l + O(z^{l+1})$ with $l \neq 6$ or when T_oT is the w-axis can be proved by imitating the proof of [5, page 119 or 3, Theorem C].

References

- Bloom, T., Peak functions for pseudoconvex domains of strict type, Duke Math. J45 (1978), 133-147.
- 2. Fuks, B. A., Introduction to the theory of analytic functions of several complex variables (1962), Moscow. (English translation; Amer.Math. Soc. 1963).
- Kohn, J. J. and Nirenberg, L., A pseudoconvex domains not admitting a holomorphic support functions, Math. Ann 201 (1973), 265-268.
- Fornaess, J. E., Peak points on weakly pseudoconvex domains, Math. Ann 227 (1977), 173-175.

- 5. Fornaess, J.E. and Stenson, B., Lectures on counterexamples in several complex variables. Math. notes, Princeton uni. press, 1987.
- 6. Hørmander, L., An introduction to complex analysis in several variables, North Holland, Amsterdam, 1973.
- 7. Krantz, S. G., Function theory of several complex variables, Wadsworth & Brooks /cole, 1992.
- 8. Rudin, W., Function theory in the unit ball of \mathbb{C}^n , Springer Verlag, 1980.

Department of Mathematics Education Hyosung Women's University Kyungbuk 713-702, Korea