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A DIFFERENT PROOF OF
THE EXISTENCE THEOREM
ON THE NAVIER-STOKES EQUATIONS

DONGHO CHAE, SANG-M0ON KIM AND SUNG-KI KIM

1. Introduction

The motions of homogeneous incompressible fluid flows in R? are
governed by the Navier-Stokes equations

(1) %+(sz)u:—Vp+vAv+f in R* xR,
(2) dive =0 in R® xRy
(3) 1)(',0) = Ug n R!‘

Here v = (vi(z,t),v3(x,t),v3(z,t)) is the velocity of the fluid flow,
p = p(z,t) is the scalar pressure, f = (fi(e,t), fo(z, t), fa(z, 1)) is
the given external force on the fluid, v > 0 is the given kinematic
viscosity, and vy is the initial velocity satisfying div vy = 0. We are
concerned constructing a weak solution of the Navier-Stokes equations
in the following formulation; by a weak solution of the Navier-Stokes
equations with initial data vy € L?(R?) we mean a vector field v €
L>°(0,T; L*(R?)) satisfying the followings:

T
/ ¢(z,0)vo(z)dz +/ / ($r-v+Vd:wdv+vAg- v)dedt =
RS o Jre
T
- / - ddzdt
0
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(4) Yo =(¢1,02,03) € [CP(R* = [0,T))]® with div e =0

T
(5) / / Vi -vdedt =0 v € CF(R* % (0,T))
0 JR?

3 Luij=1"
above definitions are obtained by multiplying test fur.ctions ¢, ¢ to (1),
(2) respectively, and integrating by parts.

As 1s well-known the existence of weak solutions of the Navier-Stokes
equations was established by J. Jeray(3] and E. Hopf[2](See also [1],or
[5].). Their constructions are essentially based on a topological method,
or a standard projection methods(Galerkin approximation scheme). In
this note we construct a weak solution of the Navier-Stokes equations,
using a completely different regularization method. This regularization
was actually used in [4] to construct local in time smooth solution of
the Navier-Stokes and the Euler equations. What we observed here
is that the same regularization scheme works well in the construction
of a global weak solution of the Navier-Stokes equations. Since there
is no general uniqueness theorem established for weak solutions of the
Navier-Stokes equations, our weak solution might turn out to be differ-
ent from the previously constructed weak solutions. We are concerened
here only with the 3-D case; extension of our result 1o the 2-D case is
rather straightforward with minor modifications necessary due to the
different Sobolev type imbeddings to be used in that case.

where v @ v = (v;v;), Vo = (%) and 4 : B = V? A;;B,;. The

2. Preliminaries

Let p, be the standard mollifier in R?, i.e.

where p € Cé’o(Rli)\ p = 0,supp p C {|1| < 1}’ plr) = p('xl) and
fRa pdr = 1. We denote

1 T —1 i

Jou=p xu=— p( “Yul(y)dy Yu € L, (R?)
€ JRS3 €
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Let us consider the system of integro-differential equations

(6) vy + J((Jev) - V(Jew)) = =Vp* + v I (AJ ) + J. f
(7,) div et =0

(8) =0 = Vg

For this system of equations we have the following:

LeEMMA 1. Given vy € H™(R?), div v =0, m > %, and
feL¥o,T; L%(Ri‘l))’ then for any € > 0 the unique solution
ve € CY[0, T]; H™(R?®)) of the system (6)-(8) exists for any
T € (0, 0).

REMARK. In the above lemma it is understood that the scalar field
p‘ in (6) is determined by solving the Poisson equation

Apt = —div J((Jv) V(Jv)) + div J. f
once v° 1s obtained.

The proof of Lemma 1 in the case f = 0 is given in [4]. The obvious
modifications of the proof in [4] for our case of f # 0 provides us that
of Lemma 1. (In particular an establishement of the uniform energy
estimate

sup o' (#)]| < Cloo, £,7)

0<t<T
can be obtained from (12) in the proof of Main Theorem in the next
section.)

3. Main Result

We recall the following compactness lemma

LEMMA 2. Let X, Xo,X_, be Banach spaces with the compact
imbedding X, — X, and the continuous imbedding Xo — X _;. Sup-
pose 1 < p; <oc, 1 < p; < oco. Let {v¢} be a bounded sequence in
LP1(0.T;X,). Assume that {42} is bounded in LP*(0, T; X_1). Then,
there exists a subsequence {v% } of {v*} and the limit v in LP* (0, T; Xo).

For the proof of the above Lemma see pp.69 of [1]. We now state
and prove our main Theorem.
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THEOREM 1. Suppose vq € L%(R?), div vg = 0.

Let f € L2(O,T;L§(R3)). Then, there exists a weak solution of
the Navier-Stokes equations on R3 x (0,T) with initial data vy. This
solution v satisfies the followings:

(9) ve L0, T: LYR%) r L*(0,T; H'(RY)),

and

(1) [o(t)E + v / IVots)ll%ds < flvol2 + / (sl ds

for almost every t € [0, T], where C i« an absolute constant.

Proof. Let v(¢t) € H™, t > 0 be the global smooth solution of the
system (6)-(8) associated with the initial data v§j = J.vy constructed
in Lemma 1. We firstly prove the uniform energy inequality for J.v°.
We take the scalar product (6) with +* in L2(R3?), and, integrating by
parts, we obtaln

1d ) .
(11) 5 I OIS + vV )13 < [(Jefov)]

where we used in particular

(Je(Jev® - V)0 v) = ((Jen - V), Jovf) =

= -1—/ Jo® V|[Jv“dz =0
2 }LS

due to div v = 0. We estimate, using the Hélder and the Sobolev
inequalities,

(T, v <N g1 evflle < CllAllg IV Tl
v . C
<ENVT B I
v B

{In the above and hereafter we use the same notation C for the con-
stants appearing in the inequalities.) This, combined with (11), pro-
vides us

d , U , C .
9 — € 2 _ €12 —_ 2
(12) Sl O + 51V} < I

b=
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Integrating both sides of (12) over [0,t], we have

. t C t
(9 a4 [ 1920 < oll+ S [ 7o

where we used ||Jv¢(t)]|2 < [[0¢(t)||2 for the first term of the left hand
side. This energy inequality implies that the sequence {Jev} is uni-
formy bounded both in L*°(0,T; L%(R?)) and in L%(0,T; HY(R®)).

We now estimate ||(Jv®)[|;7-1. Operating both sides of (6) by J,
we have

(14)  (Jev)e = —J2{(Jv®) - VI )} = J.Vp* + vIEAT v+ JE S

where J2(-) denotes J (J(-)). We estimate H ~'— norm for each term
of the right hand side of (14). Let ¢ € C$°(R?). Then, integratiing
by parts, and using the Holder inequality and the Gagliardo-Nirenberg
inequality, we obtain that

’/d dJEH{(Jev ) - VI }de
JRA

= ‘/ JZp(JvS) - VIevde
R3

I5) 2 valalaa? < [Vellall e F 1900l

1 3
SHVéllzllvollf 1VIevell3

Using the standard density argument for H'(R?) we obtain

(16) 17T - VT Y -1 < ool 3 IV To0¢) 3

To estimate ||JVp®|| -1 we take div operation on the both sides of (6)
to obtain

(17) AJpt = —div Jf{(]cvé - V)Jevt} + div Jff
Thus we have
(18) J Vpt = —VA v J?{(.Lv€ -V)Jev} + VA 1 div Jff

Here the notation A™! was used in the following sense: Let P(D) be
any homogeneous differential operator with constant coefficients, and
let ¢ be any tempered distribution. Then, we define

PD)aT =~ { o)
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where F~! denotes the inverse Fourier transform.
Using the Planchard identity we have

(19) NV -1 < T (T - )T Y =1 + | T2 Fl =

Thus, using the esimate (16), we have

(20) IV - < ool IV T |2 + (T2 Fll -

To estimate ||J2A(Jv¢)|| -1 we obscrve

¢JEA(J v )de

I < / IV(J28)||IV I lde
R3 Rs

<V [V Itll2 < [Vollz V0|
where we used
V(202 = 172V ]2 < [Vl
Thus, using the density argument as before,
(21) ITEAT0 ) -1 < VI |2

We finally estimate ||J2f||z-1. The Sobolev inequality provides us

2| [ g pde| < Nollll 2115 < CIVl Al
Thus,
(23) 12 F -+ < Cl Al

Combining the results (16).(19),(21) and (23), we have

1w Yl < ClleollZ VI 7 + ColIVIewffia + Clfl e
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We thus obtain

T 4
/0 I(Jeo)ell3 _, at

2 T 4 T 4 T 4
SC”UOHZB/O HVJw‘][%dt+Cu§[) ||Vva‘|;'23dt+C/0 [1£1]3 dt
B

2z T 4 1 T 3
scliall} [ 1vsariae+ ovdr ([T r0a)
0 J0

L ([T
+CT3s (/D ||f||2%dt>

% llvollz | 1 [T 2 1 2 T 2 g
<Clloll§ (22 + - [Tisac) + or¥ (vlwollg+ [ i1 a
JO

o
+oT} (/ ||fi|2§dt)
0 3

Thus the sequence {(J.v<);} is also uniformly bounded in L3(0,T; H !
(R*)). Due to the Banach-Alaoglu theorem and Lemma 2 we have a
subsequence, {Jcv}, which we labeled by the same €, and the limit v
having the following properties

(24)

Jev® = v weak-* in L(0,T; L*(R?)) and weakly L%(0,7; H'(R*))

and, for any fixed R > 0

(25) Jow® — v stronly in L*(0,T; L*(BRg))

where B = {z € R3 |z] < R}. The energy inequality (10) follows
from (13), combined with the convergence (24). By the weak lower
semicontinuity of the norms. We now show that the limit v satisfies
(4),(5),1.e. v is actually a weak solution of the Navier-Stokes equations

in R®. (5) is immediate from (24). Below we prove (4) for the v. Let
¢ € CE(R3)®, div ¢ = 0 be given. We choose R so that

Uo<ecTsupp ¢(+,t) C Br

We multiply both sides of (6) by J.¢ and integrate over R® x [0, T),
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and integrate by parts to obtain

T T
/ / ¢r - Jevdzdt + / / JEV¢): (Jv®) & (Jov)dadt+
0 Bpr 0 Bp
+ / Je(9(+,0)) - vodz
Br

T T
(26) = u/ / Jf(Aqﬁ)-(va‘)da:dt~/ / J2¢ - fdrdt
0 Br 0 Bpr

Since

1726 = 61l L= (0,71 (Br))
< |JZo — Je@ll Lo 0,102 (Br)) + | Ted — @l Lo (0. 7.1 (Br))
< 2(Jc¢ — bl (0,1;0° (Br)) — 0,

H(Je’l)f) & (J(ve) - & UHLI(U,T;Ll(BR))

< Jeve

+llvlleco, 72 Bap) e = vll L2 (0,7 £2(BR))
<C(DM)vollz|ev® = ol L2(0,7:L2(BR)) — 0

L2(0,T;L2(BRr))

and, finally

|72 f— 6 fllo 0100 (Br))
<76 = dllezo.rizeBanlfll oo o sy — O

as € — 0, we can pass to limit € — 0 for each term of (26) to obtain
(4) for the limit v of {J.v¢}. This completes the proof of Theorem 1.
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