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ON SEMI-KAEHLER MANIFOLDS
WHOSE TOTALLY REAL BISECTIONAL
CURVATURE IS BOUNDED FROM BELOW

U-HaANG K1 AND YOUNG JIN SUH

Introduction

R.L. Bishop and S.I. Goldberg [3] introduced the notion of totally
real bisectional curvature B(X,Y) on a Kaehler manifold M. It is
determined by a totally real plane [X,Y] and its image [JX, JY] by
the complex structure J, where [X,Y| denotes the plane spanned by
linealy independent vector fields X, and Y. Moreover the above two
planes [X,Y] and [JX,JY]| are orthogonal to each other. And it is
known that two orthonormal vectors X and Y span a totally real plane
if and only if XY and JY are orthonormal.

C.S. Houh [8] showed that (n>3)-dimensional Kaehler manifold with
constant totally real bisectional curvature is congruent to a complex
space form of constant holomorphic sectional curvature H(X) = ¢,
where H(X) is determined by the holomorphic plane [X,JX]. Also
M.Barros and A.Romero[2] asserted that for a connected indefinite
Kaehler manifold M with complex dimension n>3 to be an indefinite
complex space form with holomorphic sectional curvature c is if and
only if it has constant totally real bisectional curvature £ at any point.
Thus i section 2 let us recall the notion of totally real bisectional
curvature and calculate the totally real bisectional curvature of the
indefinite complex space form M](c) and the complex quadric Q" in
a complex hyperbolic space C H"t1(c).
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On the other hand, S.I. Goldberg and S. Kobayashi [6] introduced
the notion of holomorphic bisectional curvature H(X,Y'), which is de-
termined by two holomorphic planes [X, JX] and [Y, JY], and asserted
that a complex projective space CP"(c) is the only compact Kaehler
manifold with positive holomorphic bisectional curvature H(X,Y") and
constant scalar curvature. If we compare the notion of B(X,Y') with
H(X,Y) and H(X), the holomorphic bisectional curvature H(X,Y)
turns out to be totally real bisectional curvature B(X,Y) (resp. holo-
morphic sectional curvature H(X)) when two holomorphic planes
[X,JX] and [Y, JY] are orthogonal to each other {resp. coincides with
each other). From this it follows that the positiveness of B(X,Y) is
weaker than the positiveness of H(X,Y), because H(X,Y) > 0 im-
plics that both of B(X,Y ) and H(X) are positive but we do not know
whether B(X,Y ) > 0 implies H(X,Y) > 0 or not.

In section 1 we introduce a local complex exterior derivative for-
mula for semi-Kaehler submanifolds of indefinite complex space forms,
which will be used to prove our main result. And in section 2 let us
find a relation between the totally real bisectional curvature and the
sectional curvature of semi-Kaehler manifolds M. Alsc the further rela-
tion between the totally real bisectional curvature and the holomorphic
sectional curvature of M will be treated. Moreover in this section we
calculate the totally real bisectional curvature of the complex quadric
Q" immersed in a complex projective space CP™t!(c) with the con-
stant holomorphic sectional curvature c¢. In section 3 we will prove
that a complete Kaehler manifold M with positively lower bounded
totally real bisectional curvature B(X,Y)>b > 0 and constant scalar
curvature 1s congruent to a complex projective space C'P"(¢). Before
to obtain this result we should verify that a Kaehler manifold M with
B(X,Y)>b > 0 is Einstein. Moreover we also show that the posi-
tive constant b in the above estimation is best possinle. This means
that the condition of a positive lower bound for the totally real bi-
sectional curvature can not be replaced by the non-regativity of this
curvature, because we can find that there is a complete Kaehler man-
ifold with non-negative totally real bisectional curvature B(X,Y )>0
but not Einstein.

Although S.I. Goldberg and S. Kobayashi [6] showed that a complete

Kaehler manifold M with positive holomorphic bisectional curvature
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H(X,Y) > 0 is Einstein, in order to get this result they should have
verified that the Ricci tensor of M is positive definite. In that proof
they used the fact that the holomorphic sectional curvature H(X) is
positive, which necessary follows from the condition H(X,Y) > 0.
But the condition of B(X,Y) > 0 carries less information than the
condition of H(X,Y) > 0, it gives us no meaning to use S.I. Goldberg
and S. Kobayashi’s method to derive the fact that M is Einstein. That
1s, we can not use the condition of H(X) > ). However, in spite of
this weaker condition B(X,Y }>b > 0 by making use of generalized
maximal principal due to H. Omori [13] and S.T. Yau [16] we can also
obtain the above result.

It is known that the complete space-like complex submanifold of the
indefinite complex space form _M;‘er(c), ¢2>0 1s totally geodesic. Thus
for a case where ¢ < 0 we [1] have studied the classification problem of
space- like complex submanifolds of indefinite complex hyperbolic space
CH;*?(c) with bounded scalar curvature. Morivated by this result in
section 4 we also study those classification problems with bounded
totally real bisectional curvature. Finally in section § we study the
classification of complex submanifolds M™ of CP™*P(c),c > 0 with
bounded totally real bisectional curvature.

1. Local formulas

This section i1s concerned with local formula for indefinite com-
plex submanifolds of semi-Kaehler manifolds. Let M’ be an (n + p)-
dimensional connected semi- Kaehler manifold of index 2(s +t),(n>2,
0<s<n, 0<t<p). And let M be an n-dimensional connected semi-
Kaehler submanifold of index 2s of M’. Then we can choose a local
unitary frame fleld {E4} = {E,, ..., Enyp} on a neighborhood of M’
in such a way that, restricted to M, E4,..., E, are tangent to M and
the others are normal to M. Here and in the sequel the following
convention on the range of indices used throughout this paper, unless
otherwise stated:

AB ..=1..nn+1,..,n+p,
,7,...=1,..,n,

z,Y,...=n+1,...,n+4+p.
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With respect to this frame field, let {w4} = {w;,w,} be its local dual
frame fields. Then the semi-Kaehler metric tensor ¢’ of M' is given by
9' =28 peqwa®w 4 and {e4} = {€;, €.} satisfy
;=g (E;,E;)=—1or1 according to 1<i<s or s+ 1<i<n,
ez =g¢'(E;,E,)=—1or1 according to n+1<z<n +t or
n+it+1<r<n + p.

The canonical forms w4 and the connection forms w, g of the ambient
space M’ satisfy the structure equations:

(1.1) dwa+ Xepwaphwp =0, wap+wpa =0,

(1.2) dwap + Zecwacwep = Qas,

! !

where ' 45 (resp. R'jpcp) denotes the Riemannian curvature form
(resp. the components of the Riemannian curvature tensor R) on M.

The second equation of (1.1) means the skew-hermitian symmetry
of ' 4p, which is equivalent to the symmetric conditions

! !
R ipcp = Rpape-

The Bianchi identities TpepflapAwy = 0 obtained by the exterior
derivative of (1.1) and (1.2) give the further symmetric relations

! ' _ o o p!
(13) R ABCD — R ACBD — R DBCA — R DCBA-

Now, with respect to the frame chosen above, the Ricci-tensor S of
M' can be expressed as follows;

§' = Zecep(S'cpwcdwp + S'epwctup),
where §'cp = SpegRppep = S'pe = S'ep. The scalar curvature A

is also given by
K =2YpenS'pp.
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The semi-Kaehler manifold M is said to be Einstein if the Ricci
tensor S’ is given by

Y S
2(n + p)

S,CD = /\Ec(scD,

for a constant A, where X is called the Ricci curvature of the Einstein
manifold.

The component R jg0p and R jgopg (resp. S’ 4pc and S 4 5¢)
of the covariant derivative of the Riemannian curvature tensor R'(resp.
the Ricci tensor S’) are defined by

1] | ! Vo I _ [ .
Yep(R apopewe + R 4pepswe) = dR spep — Sep(R ppopwra

I 1] ;
+R jpcpwes + R spppwec + R ApcpwED),
] ! - ! fali ’
Ef{](s ABCuJC + S ABC““)C) = dS AB — EGC(‘J CBY%CA + S AC«UJ(/'B).

The second Bianchi formula is given by
1 !
(1.4) R apcor = R ipepc
and hence we have

A ! 2 ! - ¢
(1.5) S apc = S'cpa=XpepR' gacpp. Ka=28cSgec:

P Y & 7d L \ ] B
where dK = Zcec(Kcwe + Kewe). The components S sen

, e o , . )
S’ gep of the covariant derivative of S, 5 . are expressed by

and

(1.6)
EDfD(S:«aBCDWD“*'SichDwD) =dSy o - Zpep(Sppewna

! - !
+ SAI)(;WDB + SABDUDC)-

By the exterior differentiation of the definition of S', 5 . and by taking
account of (1.6) the Ricci forinula for the Ricci tensor S’ is given as

follows:

— ’- o ',, I o] I' _'.._ I_ »('
(1.7) Supco appc = SECE(RpoapSip — RpoppSar)-
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Restricting the above canonical forms {wa} = {wi,w,} to the sub-
manifold M, we have

(1.8) wy =10

and the induced semi-Kaehler metric ¢ of index 2s of M is given by
g = 2Z¢;wj@wj. Then {E;} is a local unitary frame field with re-
spect to this metric and {w;} is a local dual deld of {E;}, which
consists of complex-valued 1-forms of type (1,0) on M. Moreover
Wiy eeeyWn,y W1, ..., Wy are lineary independent, and they are said to be
cannonical 1-forms on M. It follows from (1.8) and the Cartan lemma
that the exterior derivatives of (1.8) give rise to

(1.9) wei = Bejhfiw;, b = i,

The quadratic form Eeiejhfjwi®wj®E, with values in the normal bun-
dle is called the second fundamental form of the submanifold M. Sim-
ilarly, from the structure equation of M’ it follows that the structure
equations for M are given by

(1.10) dw; + Efju),‘j/\wj =0, Wiy + wj; = 0,
(1.11) dwij + Eekw,-kf\w]-k = Q,’j,
Q,’j = EekEIR;]k;wk/\&)I,

where §;;(resp. R;;;) denotes the Riemannian curvature form (resp.
the components of the Riemannian curvature tensor R) on M. More-
over, the following relationships are defined:

(1.12) Aoy + Vezwe Nwy = Qayy gy = Yerer Ry wrAwr,

For the Riemannian curvature tensors R and R’ of M and M’ respec-
tively from (1.9) and (1.10) the equation of Gauss gives rise to

(1.13) Rl]kl — Ré]ki - Eezh;’khfl’

The components of the Ricci tensor S and the scalar curvature r of M
are given by

(1.14) Si; = EekR}ikk — Ye, e, hE hE

ir'‘ry*
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(1.15) r=2%85;; =255; = 2Ze]ekR“kk 2h,,
where h2. = Yere h? fzfj and h, = EekhZ

Now the components h% . and h ; of the covariant derivative of the

gk
second fundamental form of M are glven by

+ Eeyh;’jwzy.

Then substituting dh{; into the exterior derivarive of (1.4), we have

(1.16) hie = hjik = Rikj,

hI

!
ijk =-R

zijk-
Similarly the components hf;;; and hfj i of the covariant derivative of

hijx can be defined by

Eel(hz]klwl + h iWI) == dh Zf[(h:,kwh + h:}kwlj
+ hzjkwlk) + Zeyhlway,

and the simple calculation give rise to

(1.17) ikt = Pk
hiit = Pijie =Ler(Riphy; + Rigjrhl)

EeyRiyk,—hU.

A plane section P of the tangent space T, M’ of M' at any point «
is said to be non-degenerate, provided that ¢,|T, M’ is non-degenerate
if and only if it has a basis {u,v} such that g(u,u)g(v,v) — g(u,v)?#£0,
and a holomorphic plane spanned by « and Ju is non-degenerate if and
only if it contains some v with ¢(v,v)#0. The sectinal curvature of the
non-degenerate holomorphic plane P spanned by u and Ju is called the
holomorphic sectional curvature, which is denoted by H(P) = H(u).
The indefinite Kaehler manifold M' is said to be of constant holomor-
phic sectional curvature if its holomorphic sectional curvature H(P) is
constant for all P and for all points of M'. Then M’ is called a complex
space form, which is denoted by M?(¢), provided that it is of constant
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holomorphic sectional curvature ¢, of complex dimension n and of index
2s. The standard models of indefinite complex space forms are the fol-
lowing three kinds which are given by Barros and Romero [2] and Wolf
[15] : the indefinite complex Euclidean space C?, the indefinite com-
plex projective space CP} or the indefinite complex hyperbolic space
CH, according as ¢ = 0,¢ > 0 or ¢ < 0. For an integer s(0 < s < n)
it is seen by [2] and [15] that they are only complete, simply connected
and connected indefinite complex space forms of dimnension n and of
index 2s.

Now, the Riemannian curvature tensor Rpop of M™(c) is given
bV

¢ o
Raipep = SeBec(danbon +éactpp).

In particular, let the ambient space be an indefinite complex space
form MTFF (¢') of constant holomorphic sectional curvature ¢/. Then

a4t
we get
C’ L N N A r X
(1.18) Ru= Efjﬁk(éijékl + ¢ikdjt) — BeLhipig,
. 9
(1.19) S, =(n+ 1)56,'01‘]' — hi}'v
(1.20) r=n(n+1)c —2hs,
¢! i . c
(1.21) hz.r']k[: —2—(ekh80u+eihfké“+6]-hkléjl‘
- Efrfy(hizhgk + /lﬁjhzi + hfkh?j)-ilfl'
Let us denote by hy = Ef,‘fjh?].h?i and Ay = Ye,ec A, A, Y, where
Ayt = Ze,-ejhf]fzfj. Then, by means of (1.18), the Laplacian Ahjy of

the function hq is given by
! -
(1.22)  Ahy = (n+2)5hy — (2hs + Ag) + Se,eie exhlhl
First of all, let us introduce a fundamental property for the generalized

maximal principal due to H.Omori {13] and S.T.Yau 16].

THEOREM 1.1. Let M be an n-dimensional Riemannian manifold
whose Ricci curvature is bounded from below on M. Let F be a C?-
function bounded from below on M, then for any e > 0, there exists a
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point p such that

IVE(p)l <e, AF(p)>-—e and ir.fF+¢€> F(p).

2. Totally real bisectional curvature

Let (M, g) be an n-dimensional semi-Kaehler manifold with almost
complex structure J. In this section, we consider a semi-Kaehler man-
ifold with totally real bisectional curvature, which is determined by an
non-degenerate anti-holomorphic plane [u, v] and its image [Ju, Jv] by
the complex structure J. That is, the totally real bisectional curvature

is defined by
(2.1) B(u,v) = g(R(u, Ju)Jv,v)/g(u, u)g(v,v).

Then for a semi-Kaehler manifold, using the first Bianchi-identity to
(2.1), we get

(2.2) B(u,v) = ¢g(R(u, Jv)Jv,u) + g(R(u,v)v,u)
= K(u,v)+ K(u, Jv),

where K (u,v) means the sectional curvature of the plane spanned by u
and v, and [u,v] the totally real plane section such that g{u,u), g(v,v)
= %1 and g(u, Ju) = ¢g(v, Jv) = 0.

Now if we put u’ = %’1 and v’ = —J-Qgﬂ, then it is easily seen that
g(u' u') = £1,¢(v',v") = +1. and g(v',Jv’) = 0. Thus B(u',v') =

g (;(cfﬁ';{)ug‘()jv;}')") implies that

glu',u')g(v',0")B(u',0") = g(R(u', Ju')Jv',v")

9(u, u)g(v, v){H(u) + H(v) + 2Biu,v) — 4K (u, Jv)},

e B

where H(u) = K(u,Ju), and H(v) = K(v,Jv) means the holomor-
phic sectional curvatures of the plane {u, Ju] and [v, Jv] respectively
and K(u, Jv) the sectional curvature of the plane [u, Jv]. From this
together with the fact that

glu',u')g(v',v") = g(u,u)g(v,v) = £1
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1t follows
(2.3) 4B(v',v") = 2B(u,v) = H(u)+ H(v)—4K(u, Jv).

If we put u"” = “—%2, and v" = J—’\‘/-i;—”, then we get g(u' u") =
+1,g(v",v") = £1 and g(u",v") = 0. Using the similar method as in

(2.3), we get
(24)  4B(u",v") - 2B(u,v) = H(u) + H(v) — 41 (u, v).
Summing up (2.3) and (2.4), we obtain

(2.5) 2B(u',v') + 2B(u" v") = H(u) + H(v).

Now we calculate the totally real bisectional curvatures of some
manifolds.

EXAMPLE 2.1. Let M}(c) be a complex space form of constant
holomorphic sectional curvature ¢ and of index 2s(0<s<n)and [u,v]
be a totally real plane section. Then

B(u,v) =g(R(u, Ju)Jv,v)/g(u,u)g(v,v)
=c{g(u,v)g(Ju, Jv) — g(u, Jv)g(Ju,v) + g(Ju,v)g(—u, Jv)
= g(Ju, Jv)g(~u,v) — 2¢(Ju, Jv)g(—u,v)}/4g(u, u)g(v,v)

c
5
Thus M](c) is a space of complex space form of constant totally real

bisectional curvature 23

As a Kaehler manifold which is not of constant totally real bisec-
tional curvature we calculate totally real bisectional curvature of the
complex quadric Q™ which is a space-like complex Einstein hypersur-
face of indefinite complex hyperbolic space CH*'(¢'), ¢’ < 0.

EXAMPLE 2.2. Let Q7 be the indefinite complex quadric which is
obtained by projecting N = {2€S820+3| — 22 — 22 — ... — ;24 i+
...+ 22,5, = 0}. Then in a similar way [9] we can see that it is a
complex Einstein hypersurface of indefinite complex projective space
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CP™!(c) and can be idenfied with the Hermitian symmetric space of
non-compact type such that

SO*(n +2)/SO(2)x SO (n).

The canonical decomposition of the Lie algebra of the Lie group SO*(n
+2) is given by

6 =9H+M,
where = O(s,n +2), H = O(2) + O(s,n — s) and
0 (El és ~£s+l “"gn)
Moo M “Mepr 0 ~Ta
m = & m ‘5,,’632
S 0

En Mn

The Lie algebra O(s,n — s + 2) of SO*(n + 2) in the subalgebra of
& L(n, R) consisting of all S such that

where a€9(s), b€O(n — s + 2), O(s) is the skew -symmetric matrix
and z is an arbitary sx(n — s + 2)-matrix.

By changing the metric tensor g of Q7 in C P} (c) to its negative,
we can also embedd @ _, into C’H:ﬁ_s(c’), ¢’ = —c < 0. Before to ob-
tain our results we now calculate the totally real bisectional curvature
of Q" = SO™(n + 2)/SO(2)xSO™n) in CPRT(c).

Identifying (£, 7)€ RP@R? with the above matrix in 9 for the case
s = n, we define an inner product g on 9 x <M by

SEmM(E ) = < 68 >at <nr’ >a).

where < €, €' >, is the indefinite inner product in R™. We also define
a complex structure J on M by

J(ﬁw 77) = (‘77: é)
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The curvature tensor R at the origin is given by the following

0 —Ai O
RUED. () =ad| * O . BeO(n),

0 B

where A = ¢ ~ 'n¢’ and B = £{¢A&' + nAn'}, in which A is defined
by (A& = 2{€'¢'n — €'y}, Thus for unit time-like elements
w=(&n)v = (¢, n') in M, the holomorphic bisectional curvature is
given by

(2.6)
H(u,v) = g(R(u, Ju)Jv,v)

2
=A< =Bn.{' >n + < B¢ ' >0} - gg(vﬂ-’)

8
= :{< &51 >n< N, 77’ ~n — < 5777, >n< 5'#7 >n} + -;
And the holomorphic sectional curvature H(u) is given by
N 8 .2 12 9 c_c
(27) Hw) = g(R(u, Ju)Juu) = ~(eP P~ < &5 5% + S22,

where || =< £,€ > .

Now we consider the totally real bisectional curvature of the indefi-
nite complex quadric Q7 in CP*!(¢). Let [u,v] be a totally real plane
section such that v = (£,n),v = (¢',9'), and Jv = (—7',£'). Then
u,v, Ju and Jv become orthonormal unit elements in 9. That is

2
glu,v) = —{< € >+ <,y >} =0,
C
2
g(u, Jv) = ;{< E-n' >+ <€ >} =0.

From these together with (2.6) the totally real bisectional curvature is
given by

28)  Bluw) = ——{<6€ 524 <t >34 5
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As we have already seen, if we change the metric tensor g of Qrin
CP7*(c) to its negative, we can embedd the complex quadric Q™ into
CH*Y(c'),c¢' = —c. Thus a metric tensor ¢’ of Q™ in CH(c') can
be given by

9'((&m), (&) = ;27{< £E >n+ <nyp>a},

forau=(£,n), v=(£,n') in M for the case s = n. Thus by changing
¢ into ¢’ of the equations (2.6),(2.7) and (2.8) we can obtain the holo-
morphic bisectional curvature. holomorphic sectional curvature, and
the totally real bisectional curvature of @™ embedded in CH}t!(¢')
respectively as follows:

(2.9)
; 8
Hl(uvv) = Ef{< 576’ >n< 77777, >n — < fﬂ?’ >n< 7776’ >TL} +

4

[
2 1

!

8 c
(2.10) H'(u) = —{<&E>a<n >0 = <& >i}+§,

8 !
(211 Bup)=——{<&¢>h+ <6 2+ S
Now we set £ = (z;), ' = (y;), and ' = (z;)ER?. To get an upper
bound of B'(u,v) by using the Lagrange multiplier rule let us calculate
the maximal value of the following function

F=Ff&En)=<&E >0+ <&n' >2=(-Za,y;)* + (- Sz;z;)?

under the condition such that g, = £ — 2:5?20, and g = Vyf + szz —

5 = 0. The multiplier A; and A, is yet to be determined. From the

multiplier rule we get three equations

lec = 2yk2$]'y] + ZZkZCI?J'Zj = -2\ 2y,
o = 22 Zxjy; = 2Xays,
fa =22x8z5z; = 2Xq92,
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for k =1,2,...,n, where f,,, fy, and f,, means the partial derivative of
f with respect to z,yx and zj respectively. Thus the above equation
can be represented by the following vector notation

(212) Alg— < 5761 >n 51_ < éenl >n r’I = ‘)*
(213) - < 676’ >n E = /\2617
(2.14) —<&n' > €=

From (2.13) and (2.14) it follows that < £,£' >2 -X)¢/* = 0 and
<& n' >% —A3n|? = 0. Thus

(2.15) £ =M€+ 117 = Sa

where |£']*? =< £',¢' >2, and |n'|* =< n',n’ >%. Taking the inner

T

product (2.12) with £, then we get

(2.16) f=<&€ >0+ <& >i= M
Multiplying A, to (2.12) and using (2.13) and (2.14). we have that
(2.17) (f+A1A € =0.

Thus for a case of £ = 0, by (2.16) f = 0 that is, minimum value of
f. For a case of £#£0, by (2.17) f = —A1A;. From this and (2.16)
and (2.17) it follows that f = £d; = —AA; = —A|€]* > 0. Since
MA2#0, A = =5, X = [€]%. Also Ajgy = 0 gives that A\p = [£* = §
because of the fact A;#0. Hence the maximal value of f is (£)?, where
¢ = —c'. Thus %ISB’(u,v)g — %C'.

On the other hand, from (2.5) and (2.10) 1t follows that

2B'(u',v") + /<2B'(u',v") + 2B'(uv",v") = H'(u) + H'(v)<c'.

Thus B’(u’,v')<0. Together with this fact, consequently we get

!

%gBmhmgu
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3. Complete Kaehler manifolds with positive totally real
bisectional curvature

Let M be an n-dimensional Kaehler manifold with the complex
structure J. We can choose a local field of orthonormal frames u;, .. ..
Up,Upx = Juy,...,ups = Ju, on a neighborhood on M. With respect
to this frame field, let 6,,...,6,,8,«,...,0,- be the field of dual frames.

Let us denote by § = (04p,04-5,948+,04-8~),A,B = 1,...,n the
connection form of M. Then we have
(3.1)

0ap =04B.0ap = —04p,04p = —bpa.and 0,p- =bpa-.

Now we set e4 = %(u,q —tUy), €4 = %(UA +iug). Then {eq,e4}
constitute a local field of unitary frames. And let us denote by wy =
04+ 104 and wy = 04 — 16 4+ its dual frame fields respectively. Then
the components of Kaehler metric ¢ = 2% 4w 4$)w 4 and the metric com-
ponents of the Riemannian curvature tensor are given by the following
respectively

(3.2) 9Bé == ¢BC + i9BCe,

(3.3) Rigcp = —{KaBcp+ Kargerp+i(—Kapcp+ Kanep)l}s

where Ripep = 9apRE gop- Thus for the case of A = B, C = D,
B+#£C in (3.3), the totally real bisectional curvature is given by

(3.4) Rppce = —Kp+perc = Kpp+c-c = B(up.,uc).

For the case of A = B = C = D in (3.3), the holomorphic sectional
curvature is given by

(3.5) RBBBBZQ(R(U}LJUB)JUBJLB':H(UR)-

REMARK 3.1. From (1.8) and (3.4) we . ~ow that for any iotally
real plane section [u, v] the totally real bisectic..ai curvature ¥(u,v) of
a complex space form My(c) is £ which is the same '~ -~ . Example
2.1.
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On the other hand, S.I. Goldberg and S. Kobayashi [6] showed that a
Kaehler manifold with positive holomorphic bisectional curvature and
constant scalar curvature is Einstein. It is well known that the Ricci
2-form is harmonic if and only if the scalar curvature is constant. In
order to prove that the second Betti number of a compact connected
Kaehler manifold M with positive holomorphic bisectional curvature
H(X,Y) > 0 is one they have used the fact that H(.X) > 0. Thus the
Ricci 2-form is propotional to the Kaehler 2-form , so that M becomes
to an Einstein manifold.

But from the condition B(X,Y) > 0 we do not know whether H(X)
1s positive or not, because the condition B(X,Y) > 0 is weaker than
that of H(X,Y) > 0. Thus in order to get the above result it is
impossible for us to use H(X) > 0 with the condition of B(X,Y) >
0. From this point of view due to H.Omori [13] and S.T. Yau’s {16]
maximal principal we can obtain the following.

THEOREM 3.1. Let M be a complete n-dimensional Kaehler mani-
fold with constant scalar curvature. Assume that the totally real bisec-
tional curvature is lower bounded for some positive constant b. Then
M is Einstein.

Proof. Since (S g¢) is a Hermitian matrix, it can be diagonalizable.
Thus Sge = Apdpc, where Ap is a real valued function. From this it
follows that r = 25 S = 25 pAp. Now we put S; = Lg oSgcScp-
Then it yields easily that
Ii =3 /\23 - @_’}_B_)i
4dn

Since we have assumed that the scalar curvature r of M is constant,
from (1.5) it follows X pSppc = X BScpp = 0. Together with this fact
using (1.5) and the Ricel formula (1.7) we have that

1
(36) 52 - = :)""EB,C(/\B - )\0)2.
Zn

ASpe = YXpSpepp = LDSpesp
= Ze.0(RpppeSec — RpprcSnp),
from which, if we use the first Bianchi-identity (1.3) <o the final term,
we have
ASpe = Xp(SppSee ~ LoRpppeSrr)
= ASge — LaraRi4Bc-
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Thus we get
1 1 erz -
(3.7) §A52 = '2'1V5| + XB,cSep(ABSpe ~ TaraR 4 4p¢),

where |VS|? = 255, 5S4 ge- Since the second term of the right hand
side 1s reduced to

1
Y4,B(ABR a5 — AarpRispp) = sZan(da - 2B)*Risps

we get the following inequality by (3.7)
(38) ASZZE(/\A - /\B)ZRAABB7

where the above equality holds if and only if the Ricci tensor S is
parallel on M.

Now let us consider a non-negative function f = S, — ;:%. Then from
(3.6),(3.8) and the assumption it follows that

(3.9) AF>2nbf,

where the above equality holds if and only if the Ricci tensor S is
parallel on M. In order to prove this theorem, we need the following
lemma.

LEMMA 3.2. Under the same assumption as stated in Theorem 3.1
the Ricci-curvature is bounded from below.

Proof. From the assumption and (2.5) it follows that
H{u)+ H(v)>4b.

Using (3.5) to the above equation for u = uas,v = ug, A#B, then we
can rewritten the above inequality as the following

Riaan+ Rpppp24b.
If we put R4 = Rjz444, then

(3.10) Rai+ Rp>4b (A#B)
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Thus ¥ s<p(R4 + Rp)>2n(n — 1)b iinplies that
(3.11) Y AR 4>2nb,

where the equality holds if and only if R4 = 2b for any A.
On the other hand, from the fact that

r=284544=284aBR4app = 2CaRA+2Z4axBRi488)
22X aR4+2n(n - 1)b

it follows

(3.12) zARAg% —n(n - 1)b,

where the equality holds if and only if R ; ,g5 = b for any 7, (:#£7). In
this case due to C.S.Houh [8] M is congruent to M,(2b). From (3.11)
and (3.12) we know that r>2n(n + 1)b. Thus from the assumption the
scalar curvature r is positive constant. Also (3.10) gives SF_,(R; +

Rp)>4(n — 1)b, so that
(3.13) (n—2)R, + EgRp>4(n — 1)b.

From this and (3.12) it follows
(n—=2)R>4(n—1)b— XgRp>4(n—1)b— {% - n(n — 1)b}.

Thus if we use the similar method to the other index, we can assert
the following

(n—2)Rp>(n — 1)(n + 4)b — %

for any index B, so that Rg is bounded from below for n>3. Moreover
the above equality holds for some index B if and only if M is congruent
to M"™(2b). Accordingly the Ricci-curvature is given by

(3.14) Aa=S544=SBRiups = Ra+ZasBRisps
> RA+("7 — 1)b
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Thus the Ricci-curvature is bounded from below. Now Lemma 3.2 is
proved. [

Now we will complete the proof of Theorem 3.1. For a constant
a > 0, we consider a smooth positive function F = (f + )~ 7. Thus,
from Lemma 3.2 we can apply Theorem 1.1(H.Omori [13] and S.T.Yau
[16]) to the function F = (f 4 )~ for the given f. Given any positive
number € > 0, there exists a point p such that

(3.15) IVF|(p) <e, AF(p)>—e¢, F(p)<infF +e.
It follows from these properties that we have
(3.16) €(3¢ + 2F(p)) > F(p)* Af(p)>0.

Thus for a convergent sequence {e,} such that €,, > 0 and ¢,,—0 as
m—o0, there is a point sequence {pm} so that the sequence {F(py)}
satisfies (3.15) and converges to Fy, by taking a subsequence, if nec-
essary, because the sequence {F(p,,)} is bounded. From the def-
inition of the infimum and (3.15) we have F; = infF and hence
f(pm)—fo = supf. It follows from (3.16) that we have

€m{3€m + 2F(pm)} > F(pm)* L5 f(pm)

and the left hand side converges to 0 because the function F is bounded.
Thus we get
F(pm) ' Of(pm)—0 (m—oo).

As is already seen, the Ricci-curvature is bounded from below i.e., so
is any Ap. Since r = 2XgApg is constant, Ap is bounded from above.
Hence F = (f 4+ a)~ % is bounded from below by a positive constant.
From (3.17) it follows that Af(pm)—0 as m-+occ. Taking b > 0, by
(3.9) we have that

Af(Pm)ZQNbf(Pm)EO

Thus we have f(pp,)—0 = inff. Since f(pn)—supf, supf = inff = 0.
Hence f = 0 on M. That is, M is Einstein or 4<0. This completes the
above proof of Theorem 3.1. [J
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REMARK 3.2. The positive constant b > 0 in Theorem 3.1 is best
possible. This means that the condition of a positive lower bound for
the totally real bisectional curvature can not be replaced by the non-
negativity of this curvature, because there is a complete Kaehler mani-
fold with non-negative totally real bisectional curvature B(u,v)>0 but
not Einstein as follows: Consider a product manifold M = CP n' (e1)
xCP"z(cz). Then from (3.8) we know that its totally real bisectional
curvature is given by

Rdabb = 'C'gl if A= G,B = b,
RAABB = 0 if A= a7B = s,
Rirys = 322 fA=r B=s,

where indices A, B(A#B),...;1,...,n1.m+1,...,ng,ard a, b, ..; 1, ..., n1,
r,8,..;n + 1, .y T2
And its Ricei-tensor is given by the following

Sap=LcRpace = LaRpaca + LrRBpars

ﬂlzii--clé'bc fB=cA=0b,

=40 if B=s, A=b,
meticyby, fB=s A=t
Thus for case where (ny + 1)c1#(ng 4 1)eg, M = CP Y(e1)xCP™ (cy)

1s not Einstein.

Since a complete Kaehler manifold M with the assumption in The-
orem 3.1 is known to be Einstein and its scalar curvature r is positive
constant, its Ricci-tensor is positive definite. Thus by using a theorem
of Myers we can assert that M is compact [9]. Now let us introduce a

theorem of S.I. Goldberg and S. Kobayashi [6], which is slight different

from the original one.

THEOREM A. An n-dimensional compact connected Kaehler man-
ifold with an Einstein metric of positive totally real bisectional curva-
ture is globally isometric to CP™ with the Fubini-Study metric.

Though the original theorem in [6| are assumed with positive holo-
morphic bisectional curvature, it can be easily cheked that the result
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in Theorem A also holds if we assume with positive totally real bisec-
tional curvature. Thus combining Theorem A and Theorem 3.1 we can
assert the following.

THEOREM 3.3. Let M be a complete n(>3)-dimensional Kaehler
manifold with constant scalar curvature. Assume that the totally real
bisectional curvature is lower bounded for some positive constant b.
Then M is globally isometric to CP™ with the Fubini-Study metric.

4. Space-like complex submanifolds

Let M' = CH}*?(c) be an (n + p)-dimensional indefinite complex
hyperbolic space of index 2p(>> 0), and M be an n(>3)-dimensional
space-like complex submanifold of C' Hy "*tP(c), (¢ < 0). Then by the
equation of Gauss

¢ e
(41) R’“]] — ‘2" - LJIEIhl]h” E,
where we have used the fact that €, = —1, because the normal space

of M is time-like. Thus from (4.1) we know that there is a totally real
bisectional plane section [u,v] such that B(u,v) >3

Now we will give here some remarks of the totallw real bisectional
curvature of semi-Kaehler submanifolds of indefinite complex space
forms.

REMARK 4.1. For the complex submanifold M of a complex space
form M' = M™P(¢) we have

Thus its totally real bisectional curvature is upper bounded such that
B(u,v)<3. For this example let M be a complex quadric Q, embedded
in CP"'H( ). Since @, is known to be Hermitian symmetric space of
compact type, its sectional curvature is non-negative(cf.[9]). Thus from
(2.2) and the above inequality we know that the totally real bisectional
curvature B(u,v) is given by 0< B(u,v)<£. Moreover, in the paper [12]
the holomorphic sectional curvature H(u) of @, is holomorphically
pinched as 5<H(u)<c.
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REMARK 4.2. ([1]) Let M be a complete space-like complex sub-
manifold of an indefinite complex space form M :“’ (¢) with ¢0. Then
M is totally geodesic. Thus B(u,v) = £

REMARK 4.3. ([1]) Let M = M[{c) be an n-dimensional indefinite
complex space form immersed in M' = M:ftp(c'), ¢ =0,andt=p

If ¢'#0, then ¢/ = kc and n + pZ("’;k) — 1 for some positive integer
k.

If ¢ =0if and only if ¢ = 0.

In particular for the case t = p, ¢’ #0,

If ¢' >0, then ¢/ = ¢. Thus M is totally geodesic and B(u,v) = 7.

If ¢/ <0, then ¢’ = ¢ or 2¢, the first case arising only when M is
totally geodesic and the other arising only when s = 0 and B(u,v) = §

REMARK 4.4. Let Q" be a space-like complex quadric of a complex
hyperbolic space CH']"H(C') of index 2, which is defined by —z% +
Z;H'z? ? = 0 in the homogeneous coordinate system of CH! ('), ¢ <
0. Then Q" is Einstein, and it satisfies $<B(u,v)<0 for any totally

real bisectional plane [u,v].

From the above Remark 4.2 we know that a complete space-like
complex submanifold of M’ = M;“”’(c),CZO, is totally geodesic. It
gives us no meaning to consider the complete space-like submanifold of
M”"’P(c) ¢>0, with lower bounded totally real bisectional curvature.
Thus in this section we consider the classification problem of the com-
plete space-like submanifold of CH"“’( ), ¢ < 0, with lower bounded
totally real bisectional curvature.

Now suppose that there exist a lower bound b€ R such that

(4.2) R;;:>b for any 4,5 (i#7).

H]]

From this and together with (4.1) it follows that
(4.3) 2% € hf]hf]<c 2b  fer any 1,7 (i#7).

By (1.20),(3.11),(3.12) and (3.5) we have

2nb<¥;R;<n{n+1)c/2 — hy — n(n — 1)b.
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Thus we have the following
(4.4) 2hy<n(n + 1)(c — 2b),

where the above equality holds if and only if R; = 2b for any j. That
is, M = M™(2b).
On the other hand, by (3.14) and (1.20) we have that

(4.5) (n—=2)R;>(n—1)in+4)b —n(n+ 1)c/2+ hy.
Using (1.18), the holomorphic sectional curvature is given by R; =
Rj;55 = ¢ — X€,h7;R;5%, from which it follows that

(4.6) Trechihjj® =c— Ri<{(n—-1)(n+4)(c—2b) —2hs}/2(n —2).

With these estimations of the above inequalities we prove here the
following.

THEOREM 4.1. Let M be an n(>3)-dimensional complete complex
submanifold of C'H;’ﬂ’(c),p > (), with totally real bisectional curvature
>b. Then the following holds

(1) b is smaller than or equal to §.
(2) If b= §, then M is a complex space form CH"(3), pZ"("TH).
(3) Ifb = 2—(";(%%, then M is a complex space form CH"(3),
— n(ntl)
p=—7
Proof. Since M is space-like. the normal space of M can be regarded
as a time-like space. Thus the matrix (h?,-c) given in section 1 is a

negative semi-definite Hermitian one, whose cigenvalue p;' are non-
positive real valued function on M. The matrix (A7) is also by the
definition positive semi-definite Hermitian one and its eigenvalues p,’
are non-negative real valued functions on M. Then it is easily [1] seen
that

(4.7) Yeerpiz =TrA = hg,

h2
h2>h4 = u]u2>71

2

h
h%ZAz = ZI[JI__ 2.
P
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Also from the estimating of the norm of Ye{es h hfl - ;(—me(&j&kl +
dikb50)} it follows that

2
4.8 > p?

where the above equality holds if and only if M is a space of constant
holomorphic sectional curvature.

By (1.22) and (4.7) we have

n+2

(4.9) Ahg< chy — 2hy — Ap<’

2 2
Chz - -—hg - A;g.
n

From this and (4.8) it follows that

n+2
4.10 Ahy<————ho{nl e — 4h;
( ) 2_271‘(774—1) 2{n(n +1)e — 4k}

where the above equality holds if and only if M is a space of constant
curvature.

On the other hand, by the hypothesis of the Theorem and using
(1.20) and r>2n(n + 1)b we have

(4.11) n(n + 1)e —4hy>n(n + 1)(4b — ¢),
from this and (4.10) it follows that

n+2Mb—d

(4.12) Ahy<

Now we are in a position to prove the first assertion. In fact let us
suppose that b > £. Set f = —hy. Then for given any positive number
a, a function F which is defined by (f + a)~% is smooth bounded
function. Since y; is known to be non-positive, the Ricci-curvature
S, = i-‘r — ; 1s lower bounded. The function ' = —h; is also
bounded by (4.11). By using the similar method to that of Theorem
3.1 we can prove that f = 0, that is, M is totally geodesic. From this
fact and (4.11) it follows that

0>n(n+ Lesn(n+ 1)(4b—c) > 0.
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Thus this makes a contradiction. Hence b<$. We have proved the first
assertion.

For the second assertion we put b = +- Noticing h;<0, by (4.11)
and (4.12) we get

2(n +2)

n(n+1)
n(n+1) ¢

Ahy< 1

h2{ - h2}§0

From this, taking a smooth no-negative function F such that F =

"—(%ﬂc — hy, we have

<2(n + 2)
“n{n+1)

A(=F) {”(”: Ve pype - %—'J‘:—%F?

Thus we get AF> 721((213 F?. Since the Ricci-curvature is bounded from

below, we can apply a theorem due to Nishikawa [11] to the function
F. Then we get ' = 0 on M. That is, hy = ‘"—(-—';—”Ll-)-c. Thus by (4.10)

M is a space of constant holomorphic sectional curvature. Moreover
by (4.4) its holomorphic sectional curvature is R; = 2b for any j. That
is M is congruent to M"(2b) = CH"($). Thus the second assertion is
now verified.

Now we will prove the last assertion. By (1.20) and (4.4),(4.7) we
get

(4.13)
Ahy<{np(n + 2)chy — 2(n + 2p)h3}/2np

S%{np(n +2)c— (n+2p)n(n + 1)(c — 2p)}
ggZ{Q(n +1)(n +2p)b —n(n + p+ 1)c}.
p

From this and the assumption it follows that

Ah2 Sov
where the above equality holds if and only if h; = 0 or hy = -"—(—'L;—l—)(c-—
2b) by virtue of (4.4). That is, R; = c for any j and Ry;;; = § for any

t,7(:#7) or R; = 2b for any j and R;;j5 = b for any 1z, 7(i#7).



1034 U-Hang Ki and Young Jin Suh

Now we put F = —hy + ;‘féi“;;))c = a— hy, a < 0. By (4.11) and
the assumption (3) we have np(n + 2)c — 2(n + 2p)h,>0. From this we

know that the function F is non-negative. Thus by (4.13) we have

N (o hy) = P PP~ PE e
np np np

That is, AFZ"—HPEFQ. From this we can apply a theorem of Nishikawa

[11]. Thus we have F=0 on M. That is, h; = a = %{—1&1—?3(;‘ Thus

R; = 2bfor any j and R“JJ = bfor any ¢, j(:#7). Hence M is congruent

to CH™(2b) and p>" (nt]) By Remark 4.3, 2b = ¢ or £. Thus we

conclude that b = From this and together with the assumption (3)

(4.14) A(-F)<

we have that p = M Thus the proof of Theorem 4.1 is completely
verified. [

5. Complex submanifold

In this section we study an n-dimensional complex submanifold M
of (n + p) -dimensional complex projective space C'P**P(c),c > 0,
with bounded totally real bisectional curvature. In this case both the
tangent space and the normal space of M in CP"(¢) are space-like.
Thus the signs €; and €, given in section 1 will be denoted by 1.

For a complex submanifold M of CP"*?(c) let us denote the func-
tion hy by hy = =, kI k%, Thus by using (1.21) and the fact that

1370y

h’i’)k = (0 we have

(5.1)
(hz)kl —“’huk iyl + Z{ (hr ékl + h]kéll + hizéﬂ)}

Also the function h4 is given by h4 = V’hfjh?; = Vhf‘ifszhilf}f,. Thus

from this and also (1.21) it follows that

(5.2)
2 _ .
Dhy =28 [{ B2k, — (h5h2, 4 hER% + AR IR,
z]mh]zkmhfcz Umh;khilh?zm]

By using these formulas we have the following Theorem.
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THEOREM 5.1. Let M be an n(>3)-dimensional complex subman-

ifold of a complex projective space CP™P(c). If there exist a positive
constant b such that b > %(t?{;‘l%%:—g)zc and the totally real bisectional
curvature of M is greater than or equal to b, then M is congruent to a

complex projective space CP"(c).

Proof. Since in this case the matrix (hfj) and (Ay) defined in section
1 are positive semi-definite Hermitian ones, their eigenvalues, say p;
and puy, are all real valued non-negative function on M. Now we choose
a local field {e4} = {e;,€e,} of unitary frames such that hf.j = (;0,
Ay* = p 6., Then by using this frame to (5.2) and noticing that the
second and the third term of the right hand side are non-negative we
have

(5.3) Ahy>(n + 2)chy — 2he — 28 pipuihihy; — 25 puip iR,

On the other hand, by using the equation of Gauss (4.1) to the
assumption and (4.6) we have the following inequality

(5.4)
Eﬂiﬂjhfjhz‘lj :El,ﬂu?hixihfz + Ez,#]‘lizﬂjh:jhz‘rj

<{(n = 1)(n +4)(c — 2b) — 2h2} T /2(n — 2)

1
+ '2‘(C - 2b)2,u1(h2 — Hz)

={(n—-1)(n +4)—(n —2)}(c— 2b)hs/2(n — 2)

) c—2b
hohy + Thi

n-—2

where we have used hy = £,u; and hy = Zp?. Moreover, we know that
the above inequality holds if and only if M=CP"(2b) or M=CP"(c).
Since u,>0, it follows

UrSSp, = ShERG = by,

where the equality holds if and only if p, = 0 for any y#z. Using this
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fact and also (4.1),(4.3) and (4.6), we have the following inequality

(5.5)

Spipihih<ha T, hi ki

—hl{‘—-‘u hnh:z+‘—4£ i M hihy }

[ ¥ ET1
[(n —1)(n+4)(c—2b) ~“’,hgv

<h, S —2) Lipi

c - 2b
——Z#]wJ

o
S 2(n—2)
(n*=1)(c—2b) - hé}z

[{(n®+3n—4)+ (r* —3n+2)}(c - 2b) — 2hy)

where we have used
Lizgjipi = (n —1)Epu; = (n — 1)h,.

Moreover the above equality of (5.5) holds if and only if A,* = 0, that
18, ha = 0. Thus M=CP"(c).
Substituting (5.4) and (5.5) into (5.3), we have

4o -2
A]ltiz(n + 2)Ch4 - 2h6 - H—le(c - 2b)h1
2 2 2
b — hohy — w(r - 2b)RE + b3
n—2 i n—
2(n — 2
>(n+ 2)chy — uhghz} + ——hg
—9 n-—9
c—2b 2 2
- 5 {(n”"+2n—2)hy + (20° + n — 4)h3}
n —
2 . — 2 -
>n+ C}1502(n 4)h% 3n® + 3n 6( _op)n?
n n—2 n-—2
Mo,
= e [(n —4)e —2n(n - 4)hy — 3n(n + n - 2)(c — Qb)],
n(n—2) '

2
where we have used hg<hyh, to the second inequality and h§2h42-’-'nz
to the third inequality respectively. From this, using (4.4), it follows
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that

hi

hy>——t
& ““a(n - 2)

{(n® - 4)c — n(n® —n — 6)(c - 2b)}

hZ
=—2{2n(n? + 2n + 3)b— (n® + 20% 4 2n — 2)c}.

n

Thus Ahy>Bhy for a positive constant B = {‘2(n2 +2n+3)b— (n? +

2n

+2— 2)c}/n. By (4.4) the function h; is bounded from above and

hy<h2. Hence hy is also bounded from above. For a constant a > 0

let

us take a function F such that F = (f + a)~7, where we have put

f = h4. Then by using a similar method as the proof of Theorem 3.1

we

get Supf = Inff = 0. Thus f=0, i.e., hy = 0. Hence M is totally

geodesic and congruent to a complex projective space CP"(c). Thus

we

10.

11.

completed the proof of Theorem 5.1. 0O
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