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AN EMPIRICAL LIL FOR STATIONARY
MARTINGALE DIFFERENCES: AN
INVARIANCE PRINCIPLE APPROACH

JONGSIG BAE

1. Introduction

In this paper, an empirical law of the iterated logarithm is investi-
gated in the context of a stationary and ergodic martingale differences
whose values taking in a measurable space.

We assume the integrability condition on the metric entropy with
bracketing and derive an empirical law of the iterated logarithm from
an invariance principle of an empirical central limnit theorem for station-
ary martingale differences whose proof depends on a chaining argument
with stratification (see Bae, J. and Levental, S. (1995)).

We restate the invariance principle of an empirical central limit the-
orem for stationary martingale differences as in the form of Dudley
and Philipp (see Dudley, R. M. and Philipp, W. (1983)) and derive an
empirical law of the iterated logarithm for stationary martingale dif-
ferences via a method adapted from Ossiander’s empirical law of the
iterated logarithm for iid random variables (see Ossiander, M. (1987)).

The paper generalizes the empirical law of the iterated logarithm
of iid sequences of Ossiander (1987). Examples on Markov chains and
the Baker’s transformation are provided.

Let X;,X,, ... be a stationary and ergodic process taking values in
a measurable space (S5,B). From stationarity we may assume that
the process X = (X;) is double-sided (see, for example, Breiman, L.

(1968)). Define for each i € Z, F; to be the o-field generated by
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{X; : 7 £14}. Assume that for each f € F, {f(X;),F:} is a martingale
differences. 1. e. E(f(X,)|F;_1) = 0 for each i. Define

(1) Sa(f) = %Zf(X,) for each f € F.

We will prove that, under the assumption of the integrability of
the metric entropy with bracketing, 5 satisfies an empirical law of the
iterated logarithm of Strassen type (see, for example, Kuelbs, J. and
Dudley, R. M. (1980)).

2. A Setup and Main Results

We use the following setup to state the problem in a concrete fashion.
Let (S, B) be a measurable space. Choose (2 = §%,7 = B%, P) as our
basic probability space. Let T : Q — Q be the left shift transformation.
Assume that T is ergodic. Denote by X = ..., X 1, Xy, X,,... the
coordinate maps on . From our assumption it follows that {X;},cz
1s a stationary and ergodic process. Next we define for each 7 € Z a
o-field M, = o(X; : j <1) and

H,={f:Q— R: fis M; measurable and f £ L*(Q)}.
For each f € L*(2) we simply denote E;_(f) to mean E(f|M;_,) and
HycH_y={feHy:E(f -y)=0foreach ¢ € H_,}.

Finally on L*(£) we define a metric 4 by d(f,¢) = [£(f — ¢)*]'/?, for
nf, g € L*(Q).

Let 7 C Hy© H_,. From our setup it follows that for every f € F,
{f(T*(X)),M;} is a stationary martingale difference sequence. We
write

Vi=THX),
and
V=T%X)(= X).
For every f € F we define

1
2 S, = — Vi).
(2) (f) ﬁ%ﬂ )

Next we define the metric entropy with bracketing i see, for example,
Dudley, R. M. (1984)).
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DEFINITION 1. Let § > 0. For the metric space (F, d) we define the
covering number with bracketing v2(6, F,d), or vB(§6) if there is no risk
of ambiguity, as the smallest n for which there exists {fol,év APIEER

Tll,b, nst © Hy so that for every f € F there exist some 0 Syi <n
satisfying fl, < f < f# and d(fl;, f¥) < 6. We also define the
metric entropy with bracketing to be In vB(8, F.d).

VVe will use the following notations: Let Fi = {(f! ol 0< <

()} for 0 < 6 < 1 and Fy = F x F. Let F = Uosg,g}_b. For a
fun(:tion ¢ F — R, welet ||¢||r = sup e |p(f)| denote the sup of
|¢| over F. We write || - || in stead of || - || when there is no risk of
ambiguity. We define

M = {fe L¥Q): E(f) = 0}.

It is easy to see that M is a closed subspace of the Hilbert space L?(Q),
and hence M is also a Hilbert space. Let i be the unit ball of M:

U={feM:|[fll*=E|f’ <1}.
Then U defines a set U(F) of functions on F:
UF)={f > E(f-g):feFgel}
We are now ready to state our main result of this paper.
THEOREM 1. (An Empirical LIL for Stationary Martingale Differ-
ences) Assume that
1
(a) / Mnv?(u, F,d)]?du < o
0
and
(b) there exists a constant D > 0 such that

. Z" Eo 1 [f(Vi) — g(V)]?
{(f?;l)if" =1 Tld2(f,q) o }

Sal(f) }
—_— >3
{ V2loglogn ferm:

is relatively compact with respect to || - ||z a.s., and the set of its limit
points is U(F).

Then
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REMARK. Notice that the integrability condition of the metric en-
tropy with bracketing of (a) implies the total boundedness of the metric
space (F,d).

In order to see that our result generalizes that of iid problem, let ¢ be
a random variable on a probability space (S, B, Py), and let {&;,7 > 1}
be a sequence of independent copies of £. Let F be a class of real
valued functions defined on S. Suppose that

Eyf(é)=0forall fe F

and
Eof*(€) < oc for all f € F.

The following restatement of Theorem 4.2 of Ossiander (1987) will
be a special case of Theorem 1.

THEOREM 2. (An ELIL for IID Random Variables)
Iffol[anB(uv]:a Lz(Po))]%du < oo. then

S fl&)
{-—————-——,__1.___1_2” (’)g Ogn.fef,n23}

15 relatively compact with respect to || || a.s., and the set of its limit
points is U(F) where

UF)={f = Eof(£)g(&): f € F,g €U}

with
U=1{ge LS5 B,Py): Egg*(¢) < 1}

Proof of Theorem 2. Consider P = (Py)? so that (X;) are iid. In

this case we see that

E; _1[f(&) — g(€))* = Eolf(&) — (&) = d*(f, 9).

So the condition (b) of the Theorem 1 holds with D == 2. This implies
that Theorem 2 is a special case of Theorem 1. [
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3. An Empirical CLT and Its Invariance Principle for Sta-
tionary Martingale Differences

In this section we consider an invariance principle of an Empirical
CLT for stationary martingale differences. Define

(nf]
1
?iggﬂvm for f € F and for t € [0,1],

where [z] denotes the integer part of z. We write § = F®[0,1]. Define
a pseudo-metric p on S by

p((£,1),(g,9)) = max{d(f,g), t — s[}.

It is well known that B(S) is complete in the sup-norm, so that ( B(S),
[| - ||s) forms a Banach space. We use the following definition of weak
convergence due to Hoffmann-Jgrgensen (see Hoffmann-J¢rgensen, J.

(1991)).

DEFINITION 2. A sequence of B(S)-valued random functions {Y;, :
n > 1} converges in law to a B(S)-valued Borel measurable random
function Y, denoted Y,, = Y, if

(3)  Salfit)=

Eg(Y) = lim E*(Y,).Yg € C(B(S), |- Ils).
where C(B(S),|| - ||s) is the set of all bounded, continuous functions
from (B(S),]| - ||s) into R. Here E* denotes upper expectation.

The following Proposition 1 whose proof depends on a chaining ar-
gument with stratification appears in Bae and Levental (1995).

PROPOSITION 1. Assume that (a) fol nvB(u, F, d))2du < oo and
(b) there exists a constant D >> 0 such that

. " Eio i [f(X5) — g(Xi))? }
P >Dy—0.
{fﬁlﬁf; nB(fg) 2

Then there exists a Gaussian process {Z(f,t) (f,t) € F®[0,1]} with
bounded and continuous sample paths such that

Sp = 2,
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as random elements of B(F ® [0,1]) The Gaussian process has the
mean EZ(f,t) = 0 and the covariance structure EZ(f,t)Z(g,s) =

(tANS)E(f-q).

4. Proof of Theorem 1
We begin with

DEFINITION 3. A sequence of B(S)-valued random functions {Y,
n > 1} converges in probability to 0, denoted Y,, —% 0, if

lim P*{|Y,| > €} = 0. for every € > 0.

We will use the following restatement of Proposition 1 in the proof
of Theorem 1. See Theorem 1.3 of Dudley and Philipp (1983). See also
Theorem 4.1 of Ossiander (1987).

PROPOSITION 2. Assume that

a) fol[ln VB(u,]:,d)]lzdu < oc
and

(b) there exists a constant D > 0 such that

. "\ Ei[f(Vh) — g(Vi))? }
{(f?)re)f; nd*(f.g) -

Then there exists a sequence of ii.d. copies of a (Faussian process
{Z(f): f € F}, defined on (2,7, P, with bounded and continuous
sample paths on F with the mean FZ(f) = 0 and the covariance
structure EZ(f)Z(g) = E(f - ¢) such that

1
—= max sup | E M -0 . asn— oc.
n 1<k<n feFr © !
1=

The Z)s can also be chosen such that, with probability 1 for some
measurable U,

?Ey% D) = 2N < U = of ViogTogm)

The following corollary is easily follows from the above proposition.
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COROLLARY 1. Assume that
1

(a) /[mB(u,f,d)]%du < 00
4]

and

(b) there exists a constant D > 0 such that

. "\ Ei[f(Vi) — g(Vi)]? }
P >Dy - 0.
{uﬁ‘éf; nd*(f,g) -

Then there exist a sequence {/:,, :n > 1}, with bounded and contin-
uous sample paths, of copies of a Gaussian process {Z(f) : f € F}
defined on (Q, 7, P) such that

|1Sn — Zn| =70, as n — .

The Z!s can also be chosen such that, with probability 1 for some
measurable U,

IS0 = Zn|| < Un = o(\/loglogn).

Proof. Let {Z;} be as in Proposition 2. Set Z, = ﬁzzl_:l Z;.
Observe that

- 1 <« 1 — .
Sn—Znll < sup |— Viy—Z; sup |—= 2\ —-2Z, .
I ll_fegiﬁ;(f( ) (f))|+f€1;|ﬁ§ (F)=Zal )]

Since the Gaussian processes Z and Z have the same mean and the
same covariance structure, they have the same distribution. That is.

P{Hsn ‘ZnH = 0} =1

Proposition 1 implies the results.
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PROPOSITION 3. (Theorem 4.3 of Pisier(1975))

Suppose that fol[lnyB(u,f,d)}%du < co. Let {Z; :1 > 1} be a
sequence of 1.i.d. copies of a Gaussian process {Z(f): f € F} defined
on (Q,7,P). Suppose {Z(f): f € F} has bounded and continuous
sample paths with EZ(f) = 0 and E||Z||* < co. Then Z satisfies the
empirical law of the iterated logarithm. That is,

Zzl '(f)

is relatively compact with respect to || - || a.s., and the set of its limit
points is

Fy={f—>EZ(f)Z(g): f€ F,g €U}
where U = {g € L}(Q,T,P): EZ*(g) <1}.

REMARK:. Z takes values in C(F), the bounded and continuous
functions from F to R, forms a separable Banach space with the sup-
norm || - ||£.

We are now ready to prove the main result of the paper.

Proof of Theorem 1:. By Proposition 1, there exists a Gaussian pro-
cess {Z(f) : f € F} with bounded and continuous sample paths whose
mean 1s zero and covariance structure is

(4) EZ(f)Z(9)= E(f-9).

Apply Proposition 2 to choose a sequence {Z; : 1 > 1} of i.i.d. copies
of {Z(f): f € F} such that

(5) ”\/21_0g—10_g—ﬁ \/—LZ NI £ Y = o(1),

with probability 1 for some sequence of measurable Y s. By Proposi-
tion 3, Z satisfies the empirical law of the logarithm. That is,

Y Zi(f) }
= f >3
{\/inoglogn fernz
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1s relatively compact with respect to || - || a.s., and the set of its limit
points is

UF)={f—EZ(f)2(g): f € F,g €U}

where U = {g € L*(Q,T,P): EZ*(g) < 1}. This, together with Eq.(4)
and Eq.(5), completes theproof of Theorem 1. O

5. An Empirical LIL for Stationary Markov Chains

Let Xg, X1, X3, - beastrictly stationary and ergodic Markov chain
taking values in a measurable space (S, B) with transition mechanism
P(z,dy) and initial distribution a. We assume there exists b > 1 so
that

(6) P(z,dy) = p(z,y)a(dy),z,y € S
and
(7) 0<p(r,y) <b< oc,z,y€S.

Let P: L*(a) — L%(a) be defined by
®) Plg)(e) = [ gtu)P(s.dy), g € Lo
s

Denote ||f|| to be the L?(a)-norm of f. Then from Jensen inequality
we note that

(9) sur;ng(l")I <bllgll, g € L*(a).
TE

For every f € F C L?(a), we define
1 O
7 > {f(X:) = Eaf(Xo)}-

PE=a1

(10) Sn(f) =
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REMARK:. In order to derive an empirical law of iterated logarithm
for stationary Markov chains we will use the basic idea in Bae and
Levental (1995) where the problem is translated into that of a station-
ary martingale differences as was originally done by Gordin and Lifsic
(1978). We give the proofs of arguments as needed for the completeness
of the proof of Theorem 3.

Let M, = {f € L*(«) : Eo(f) == 0}. Notice that M, is a closed
subspace of the Hilbert space L?(«) and (I — P)M, C M,,.

LEMMA 1. Assume (6) and (7). Then
(a) I — P is a one to one and onto operator on M,
(b) (I —P)=' =3 =, P on M,, where the convergence is in

operator norm.

Proof of Lemma 1:. (a) From the ergodicity it foliows that I — P is
a one to one operator on My, in other words, 1 is nct an eigenvalue of
P. Note that P is a compact operator on M, (see Yosida, K. (1965),
Example 2, p.277). This implies that every nonzero element in the
spectrum of P is an eigenvalue (see Yosida, K. (1965), Proposition 1,
p.284). So 1 belongs to the resolvent set of P and I — P 1s also onto.
(b) {X,} is a ¢-mixing Markov chain: namely, ¢(n) converges to zero
exponentially fast, where ¢(n) = sup acg gesa(a)>o [P(Xn € B|Xo €
A) — a(B)| (see Ibragimov, I. A. and Linnik, J. V. (1971), p.367-368).
Since ||P"|| < 2y/¢(n) (Ibragimov. 1. A. and Linnik, J. V. (1971),
Theorem 17.2.3), it follows that limsup,,(||P"[|)}/" < 1. Therefore we
have the representation (I — P)~! = %"= Pton M,.

From stationarity of the Markov chain, using the Kolmogorov consis-
tency theorem, we may assume that the process (X ) is double sided.
Also each f : S — R will be considered as f : $¢ — R by putting
FX0) = f(Xa).

Let G = {(I-P) '[f—E.f]: f € F}. Observe that f—E.f € M,.
We assume without loss of generality that E,f = 0, f € F. Then
G can be rewritten as {(I — P)"1f : f € F}. For every g € G
we define § : S¥ — R by §(X) = ¢(Xo) — Pg(X _1). Observe that
Pg(X_1) = E{g(X,)|X_1}. This implies that {§(T* X))} is a martin-
gale difference for each g € G.

We are ready to state an empirical law of the iterated logarithm for
stationary Markov chains.
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THEOREM 3. Let F be a class of real valued functions defined on
S. Assume that (6) and (7) hold. If fol[ln vB(u, F,L¥*(a))]?du < o,

then
Sn(f)
——te— f € F n >3
{\/QIog]ogn / T
is relatively compact with respect to || - || a.s., and the set of its limit
points is

L ={9(Xo) - Pg(X_1) = Eqlg(Xo) — Pg(X_1))(h(Xo) — Ph(X_1))
=(I-P)"'(f~Eaf), f€F, hel}

where

U={heMqy:E,(h(X)— PR(X_1))? <1
h=(I-P)"'(f-Edf).feF}

LEMMA 2. If fol{ln vB(u, F, L% (a))]'/2du < oo,
then fol [InvB(u, {3}, d))2du < .

Proof of Lemma 2:. Let u > 0. Write vP(u) = v (u F,L%*(a)). By
definition of vB(u), there is {f} ,, f&',. 7f:i9(u),u B (u)u) SO that
for every f € F there exists 0 < ¢ < vB(u) satisfying fz,u <f<fh
and |[f?, — fl,ll < u. Let M = sup;c||f]|. Since |[PN]| — 0 as
N — oc, we can choose N so that ||PV]|| < HMT—p=T-  From
Eq.(9) we see that

(11) sup | Z P" f<x|~sup|PZP"f(r>|<

€S N4l

tol:

We also see that

00 N =)

N
(12)  g=Y P"f+ Y PUf<> P'f 4+ > P,
n=0

n=N-+1 n=0 n=N+1
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Define
N u N u
{ ] n
95w = E P"fi— 3 and g7, = E P fr + 5
n=_0_ n=>0

for j =0,---,vB(u). Then since ¢ = (I — P)~!f and fqu < f <t
using Eq.(11) and Eq.(12), we get ¢! , < g < g:,- We also have

N
d(gl!,iug:u) = Hglu,u - g:,u“ S u+ H Z‘Pn(filfu - filu)ll S C- u,

n=0

where C' =1+ supy || Eivzo P™||.
We now define the brackets {gl‘]yu,ggyu-,--- ,giﬁ(u)’u,ggﬂ(u)‘u} for §
by the following equations

g;’,u = g;’,u(X()) - Pg;,u(‘s(_l)’ and g]u,u = g]y,u(X(’) - Pg;',u()(—l)v
for j = 0,--- ,vB(u). From the inequalities
9:u(X0) < g(Xo) < g1’ (Xo), and
Pg!.(X-1) < Pg(X.1) < Pgl (X_1)

we have

Gia < <ar,
and
We conclude that
i 1 1 U P 1
/[lnuB(u,{g},d)]?du S/ nv?(—,F,L*a))2du
0 0 2C
o
:20/ (nv?(u, F, L*(«))]2du
Jo
< 00.

The proof of Lemma 2 is completed. U
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LEMMA 3.
n—1
(13) sup | Y {f(X:) = §[TH(X)]}| = op(y/nloglogn).
1=0
Proof of Lemma §:. Since (I — P)g = f we see that

sup | Z{f JIT (X} = supg(Xo) — g(Xn)| < 26G(Xn),

where G(-) = sup,¢g |9(-)|. Notice that G € L?(2) as follows from the
proof of Lemma 2. Now Eq.(13) follows from Markov inequality.

LEMMA 4. There exists a constant D > 0 such that

» { " Ei [ (TH(X)) — ha(TH X)) D} 0

sup
(hlyh2)€{§} =1 ndz(hlth)

Proof of Lemma 4:. Let us first assume that ||P|| < 1. We choose
D = =i +1 > 0. Note that

(14 Pa)e) = [ P@neviatda) < b [ ualdy) = bl
and

(15) Igl1? = 11Pgil® > liglI*(1 — {P}]2):

So for (g1,42) € {g} x {3}

E_i[(g1 — ¢2)(X)]?

=P(g1 — g2)(X ) [P(g1 — g2)(X 1)

<P(g1 — 92)%

<bllgs ~ gall”

s-l——_—l”l—P”—2(||gl ~aall = 1P(: ~ g2)I1)
b

SToPE d*(g1, g2)-
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Similarly for (§',3") € Upcs<i{d}e

E_[(g" - g')NX))?
<2E_[(¢" ~ ¢ (Xo) + {P(g" — ¢')(X 1)}
=4P(g" — g")*(X_1)
<4bllg" — g'||*
=4bd*(g', 5").

2

]

Therefore we have

P { "\ Ei [h((X0) — ho( X))

N/

sup
(k1 h2)€{3) i nd*(hy, ha)

' D} = 0.

If || P|| = 1 then there exists N so that ||P™|| < 1. We will work with
N Markov chains (X4 ni1)2y, k= 0.1,--- | N — 1. For cach Markov
chain the appropriate Markov operator is P". Choose Dy for each
k=20,...,N -1 so that

P*{ ~ Eioa[ha(Xeyvi) = ha(Xpani)l* Dk} ~0
(

sup >
hl‘hQ)E{b} 1=1 nd?(hlahﬂ)

Write D = max{Dy,...,Dn_1}. Then

sup
(hl»hQ)E{g:]} =1 ndQ(hl,hz)

SP*{ N Eiolhi (X ni) = ha(Xepi))? 2 Dk}

N { " Bt (T(X)) ~ hal T D}

sup
(hi k2)€{3} k=0 i=1 ndz(hlahQ)

N-1 n ‘

Ei1[hi(Xgini) — hZ(Xk+Ni)]2 }

< E P sup E > Dy
k=0 {(h1,hz)e{§} i—1 nd?(hy, hy)

={.

The proof of Lemma 4 is completed.
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Proof of Theorem §:. This follows from Leinma 2, Lemma 3, and
Lemma 4 apply to {g} by noticing that the set of the limit points in
this case is

L ={g(Xo) — Pg(X 1) = Ea(g(Xp) ~ Pg(X_1))(h(Xo) ~ Ph(X 1))
=(I-P)"Yf-Ef).fe F.hel}
where
U={heMy:Eu(h(Xo) — PhX_1))?

<l,h=(I—-P) Y f-E.f),f€F}
The proof Theorem 3 is completed.

6. An Empirical LIL for the Baker’s Transformation

Let @ = [0,1) x [0,1) be the sample space, T be the Borel sets
and P be the Lebesgue measure. Define the Baker’s transformation

6:10,1) x [0,1) — [0,1) x [0, 1} by
Dy, ¥) if 0<2<d,
é('w,y)Z{( %) ;

(20 - 1.2y if 1<a<l

We can think about (...,r_,,z¢,2,...) € {0,1}7 as a point (z,y)
in the half open unit square [0 1) x [0,1) by putting = = > =, 557
and y = 5 2. %5+, It is known that the transformation is ergodic (See

1=1 2'
Durrett, R. (1991)) For t € [0, 1], we define

110.0(y) if 0<z<i
fz(xyy):{ . o 2
"—1|(),t](y) if 7 S r <1
Consider the class of functions F = {fu(a,¥)}o<i<1. We denote
¢ x,y) = (zi,yi) for (z,y) € [0.1) ><[0 1), i = 0,1,.... Define

(16) Za(t) = Za(fo) = f}_jft iy, fr€F.

Notice that there is a one to one correspondence between F =
{fe(xr,y): 0 <t <1} and [0,1]. The metric d and the sup-norm || - ||
in this case is given by d*(fy, f.) = |t — s| and ||p||F = supg<i<1 l@(1)]
respectively.

The following theorem is an empirical law of the iterated logarithm
for the Baker’s transformation.
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THEOREM 4.

{;J%{)—%T___—ag?:té[o,l]’nZB}

1s relatively compact with respect to the sup-norm a s., and the set of
its limit points is

LY
u((o.1)) = {H | [ oteae
1
—«[ /Og(z,y)dydw:tE[O,li,gEU}

where

U= {g € L¥[0,1) x [0,1)) :[} /0 g%(z, y)dadz

-(/01/019($7y)dydx)2 < 1}.

The following lemma appears in Pollard (1984).

LEMMA 5. (Bernstein’s Inequality) Let Y;,...,Y,, be independent
random variables with zero means and bounded ranges : |Y;| < M.
Write o7 for the variance of Y;. Suppose V > 6} + -+ + a%. Then for
each n > 0,

P{IZYA >n} < Zexp{———ﬂz—-}

M
V4 M

We observe that E( fi(z,y)|y) = 0 for each 0 < ¢ <1, which means
that {fi(z:,yi)} is a martingale differences for each . In the proof
of Theorem 5 we will apply Theorem 1 to the class of functions F =
{flz,y):0<t <1}
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LEMMA 6. There exists a ID > 0 such that

P q sup Z ——“——-‘1[0’4(%) >D5% —0, as n— oo.
tef0,1] 2 nt

Proof of Lemma 6:. It will be enough to show that

(17) P sup e kg (yi) > 8v/n p — 0,as n — o0.
OSkS[\/ﬂ—l,Z:; e
Claim:

(2k+1)m g2m

Z 2mp Z(I[O,?xw](y,)— ——) >2™mY 50, as m — oo.
1=2km+1 =1

To prove the claim we observe that

Ly k=01 2.

}’k = (1[015;”](3/1) - -Q_m_ )

is an ii.d. sequence since the Y; depends on disjoint subsets of the

i 2
sequence of 0's and 1's. Note that EY; = 0. and Var(Y;) < 2% as
follows from

(2k+1)m
Var(Yy) = Var Z Lio, o1 (%)
1=2km+1
(2k+1)m 2
<E|m Z Lo b (Wi) | = S
1=2km+1

Apply Lemma 5 with V = m?2™, an upper bound of Ek“‘ ) Yi
M =m,and n=27" ! to have

(3]
(18) 2™P Z Yi>2m1 Y 50, as m — oo,
k=0
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as follows from the inequality

(2]
»)Tn
amp Vi > om! <2m+l-(z)<){——,u—}.
;0 k = Pl 8mi+ o)

Similarly for the Z; defined by

(2k42)m 1
Zi= Y (o (vl — ) k=012,
i=(2k+1)m+1 -
we have
132
(19) omp Z Ze>2" 'Y 50, asm — .
k=0

The claim follows from Eq.(18) and Eq.(19). Using the representation
of 0's and 1's we see that the distribution of

{1[7’“;,*7‘:%](%): [ =1, 90m }

does not depend on £, so that of

22m
Z 1[% %%](yz)
=1

n

P sup Z 1[_L.ﬁl}(yi) >2-2"% 50, as m — Q.
p Vvt n
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We have proved Eq.(17) for n = 2™ m =1, 2, ... For 2?™ < n <
22(m+1) we have

P 1 ko k41 1 8v/n
{Kkz‘@a_lz (v > 8V }
(Vn] -1 n
Z P{Zl 7-;-_] y,!>8\/_}

= [Vn]P {Z‘? 1[0,#](%) > & \/_n_}
22(m+1)

<2mDPE N g a(yi) > 8-27"

ZZm
<4-2mp I () > 22
p==1

— 0, as m - oc,
as follows from the claim. The proof of Lemmz (6) is completed.

Proof of Theorem 4:. We verify the conditions of Theorem 1. Since
there is a one to one correspondence between F = {f;(z,y): 0 <t <
1} and [0, 1], the integrability condition of the covering number with
bracketing is obvious. Recall that the metric d in this case is given by

d*(fi, fs) = |t — s|. Note that

Ei-—l(ft”‘fa)z(‘riayi) = 1[t,s( )for 0<t<s< L

Condition (b) follows from Lemma 6. Finally observe that the set of
its limit points U([0,1]) in this case is given by

% t 1 t
{t — / / g(z,y)dadr — / / g(z,y)dydz : t € [0,1],9 € U}
o Jo J1Jo

where
1 1
u={ger0.1)>0.0): [ [ sedods
0 0

—(/ﬂ1 /01 g(z,y)dyde)? < 1}
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This completes the proof of Theorem 4. [
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