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PROTTER’S CONJUGATE BOUNDARY
VALUE PROBLEMS FOR THE TWO
DIMENSIONAL WAVE EQUATION

JoNG DUEK JEON, KAN CHER KHE, J1 HYUN PARK,
YoNG HEE JEON AND JONG BAE CHoOI

1. Introduction

In 1954 M. H. Protter [1] formulated the following boundary value
problem as an analogue of the plane Darboux problem.

PROBLEM D;. Find a solution u(z,y, 7) of the equation

02 02 o?
(1) (5?4"5?—5;5)”(%%7):0
in the domain Q : 0 < 7 < p = /22 +y? < 1 — 7 such that u €
C(Q)N C*Q) and
(2) UIR" :LP,. 2:071

where ¢;, ¢ = 0,1 are given functions, the conic surface Ky : 0 < p =
7 < 1/2 and the circle without the center K1 : 7 =0, 0< p < 1.

FIGURE 1.
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Let Ko = 0Q \ (Ko U K1) be the surface of frustuin of cone.

In 1957 Tong Kwang-chang [2] noted that the linear space of solu-
tions of the homogeneous Problem Dy is infinite-dimensional. Exam-
ples similar to [2] are presented in [3]-[5] :functions

ui,k,n(raya T) = “'z',k,n(PCOSG»PSinHa T)
= rp" T (1 = 72 p?) T H T (n — i, —1;3/2,77 0P )Y (),
n>3 k=01 ¢=0,1,- -,[(n—3)/2],

p=+z?+y? >0, 0<6=Arctgy/x <2m,

where Y; ,(0) = cosnb,Y; ,(0) = sinné, F(a,b,c;t)-hypergeometric
functions, are nontrivial solutions of the equations (1) in the domain

() and

wign(z,y,7) € C(Q)UCHQ)
and they are satisfied to the homogeneous boundary conditions:
ulp: =0, i = 0,1. Therefore, a well-posed formulation of boundary
value problems for equation (1) in () has attracted the attention of
many authors (see [6]-[8] and the papers cited in their references). In
[9]-[11] sufficient conditions were given that are essential for uniqueness
of solution of problem D, and of the following problem.

PROBLEM D;. Find a solution u(r,y,7) of equation (1) in @ such
that u € C(Q)NC(QU K,;)U C* Q) and
U|K0 =0, OufOT|K, = ¥1.

The existence of a classical solution satisfying the uniqueness conditions
was proved in [10] for problems D;, =0,1.

In this note we shall consider the following conjugate boundary value
problems.

PROBLEM Dg. Find a solution u(z,y,7) of the equation (1) in @
such that u € C(Q)\0(0,0,0)) N C*(Q) and

(3) ulk, = 1, ulg, = v2

where the p;, 7 = 1,2, are given functions.
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ProBLEM Di. Find a solution u(z,y,7) of the equation (1) in @
such that u € C(Q \ 0(0,0,0)) N CHQ U K,) N C*Q) and

Ou
(4) 6—7-'}‘—‘ = ¢1, ulg, = 2.

We note the conjugate boundary value problems (1), (3) and (1), (4)
are overdetermined in the class of functions C(Q) N C%*(Q) because the
homogeneous Problems D; have the infinite-dimensional linear space
of solutions. We denote by U the class of unbounded functions

(5) u(z,y,7) € C(Q)\ 0(0,0,0)) N CHQUULK,)NCHQ)
and which are represented in the form of

u(z,y,7) = u(pcosh, psinb, 1)
(6) S S vkl Yin(6)

n=0 k=0

Where the functions
(7) v k(p,7) € C(G)NCHGUUL,THNCYHEG)
the domain G : 0 < 7 < p < 1 -- 7; the lines

Ipy:0<r=p<1/2,
Nh:7=00<p<1,
M:0<r=1-p<1/2.
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FIGURE 2.
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THEOREM 1. (A UNIQUENESS OF SOLUTIONS). Let =0 orl=1
and the functions u;(z,y,7),1 = 1,2, are the solutions of the equation
(1) in Q with the boundary conditions (3) if I = 0 or (4) if l = 1 and
uilz,y,7) €U, 1 =1,2. Then uy(z,y.7) = uz(z,y,7) in Q.

2. Proof of Theorem 1

Evidently the function u = u; — uy is a solution of the equation (1)
in ) and belongs to the class U of functions (5) and (6) and it satisfies
to homogeneous boundary conditions

‘ Olu ‘
(8) b’;y]h'lzt)ﬂlim =0

Then we may show that functions 1, x{p,7) in (6) are solutions of
equation (respectively)

2 1 -2 2
(9) an=<§p—2-+———;—z-§p——-887) vp,T)=0in G, n=0,1,2.---

and satisfy to the homogeneous boundary conditions

o'v
(1O> ﬁh—‘l =0, Vlrz =0

because the functions

Vak(p,T) = %/ u(pcos 8, psinb, 7)Yy ,(6)dé

—1

Let the domain G, : 0 <7 < p—¢ <1 -1 —¢; the lines

0:0<T=p—ec<(1-2)/2,
M:r=0e<p<l,
I:r(l+e)/2<p=1-7<1,

where arbitrary number € : 0 < & < 1/2.
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If n > 1 then by integrationg on parts %%Lny in G, we get

(11)
Ov Ov ov v ov  Ov
vy _ Nz dr§
o gt / 7l 67’ dr 1 /(aﬁa) r

Tl—].// d(rs——o
Ge

So from (7) and (10) we have

v dv c

(G- S

Therefore from (11) we get 5= a" =0in G, and 3: + 5 d” =0in . Then

from the boundary cond1t1onﬂ (10) we have V(p,T) = 0in G,. When
e—>0weget v=0inG.

Therefore in (6) we have got the functions vni(p,7) = 0 V, >
1, k=0,1. Then the function u(p,8,7) = vo o(p, 7).

Now we consider the function

p
Wip,7) = / ov(0,0)(e,7)do, (p,7)€G.
17
It may show

LW =0inG,
al

a,llﬂ 07 W,F —
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As proved above there we may proved W = 0 in G.

Then

—1 aw(pa T)

% =0inG.

Vo.o(P, T) =p

Thus u(z,y,7) = uy(z,y,7) —uz(z,y,7) =0 1in Q.
So ui(x,y.7) = uy(z,y,7) in Q. Theorem 1 is proved.
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