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ON PROJECTIVE REPRESENTATIONS OF A
FINITE GROUP AND ITS SUBGROUPS 1II

SEUNG AHN PARK AND Eunumi CHoOI

1. Introduction

This is the sequel to our paper “On projective representations of
a group and its subgroups I” [4]. In Section 4 [4] we proved some
global properties on regularity condition. The purpose of this paper
is to study local properties, that is, we shall ask how the regularity
condition on subgroups is related to that on group. Throughout the
paper we use the same notations as in [4].

2. Regularity Conditions on Groups: Local condition

THEOREM 1. Let G = H x K with normal subgroups H and K.
Let 8 € Z*(H,F*). If every F-class of H is (F,3)-regular then every
F-class of G is (F, Cor §3)-regular, where Cor = Cory g.

Proof. Choose integers n and m(c) for G satisfying the condition
(A) in [4]. Then these integers work for H, too. For g € G, choose
(o,2) € G x G such that .r“]gm(”_l)m = g, and write m(c~!) = m.
Choose K as a transversal of H in G with respect to which Corg g
is defined. Write ¢ = hg and z = 27 so thet z7'A™z = h € H and
t gz =gec K,for h,z€ H, g,z € K. Then

m—1

vi(h)” va(h)™™ [ B(R*, R)B(R™, 2) = B(z, h)
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where vy(h)is as in (A) with respect to g. Since
n—1 —_— y n—1 _
vir(h)*" = [ 8 (g’gi 99 ‘) = I (Cor3)(g',9)
=1 1=1

(here we have used Theorem 5 [4]), we can choose ar. n-th root v(g)
of H:lz_ll(Corﬁ‘)(g",g) such that v(g) == vy(h)*. Then

m—1

o(g9)” (g)™™ [ (Cord)(g*,9) (Cord) (g™ )

1==1]

-1

= [on(h)" vp(h)™™]". [H BlR', R)B(R™, 2)]" = B(z, h)*.
=1

which equals (Corf3)(z,g¢). This completes the proof.

COROLLARY 2. Suppose that G is a finite nilpotent group which is
a direct product G =Yy x .-+ x Y, of normal Sylow subgroups Yy,.
If every F-class of Y, is (F,a)-regular for o € Z*Y, ,F*) then
every F-class of G 1s (F, Coryq', gw) regular.

Since G' =Y, x (Y,, x - xYg, ), 1t is clear by induction on t.

For a partial answer of the main question, we assume that G is a
nilpotent group or G is a central product of two subgroups.

THEOREM 3. Let G be a nilpotent group as in Corollary 2, and let
f € ZYG F*). If every F-class of Yy is (F, fy,)-regular for all q,
then every F-class of G 1s (F, f)-regular.

Proof. Let K; =Y, x---xY,_ > Y. XY, with |K;|= pu;, and
take K as a transversal of Y, in G where Coryqj . (write Cor; for
it) is defined. If every F-class of Y, is (F), fyqj )-regular, then every
F-class of G is (F, Cor]-(:fyqj })-regular (by Theorem 1) thus every F-
class of G is (F, f#i }-regular, since Cor]-(fyqj ) is cohomologous to  f#
(by Lemma 2 and 3 [4]). Choose n and m(o) for 7 as in (A), and
write m = m(o~!). Then these integers work for subgroups of G.
For g € G. choose (o,z) € G x G with .r_lg"‘(”_l):r = ¢g. With v;(g)
which is analogues of v(g) for f#/,

v;(9)7 vi(e)™™ [T £ (6" 9)f* (g™ 2) = 1% (2, 9).

=1
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Since vj(g)* = 15 ! (g%, 9)" = v(g)™, there is v;i(g) such that
vi(g) = v(g)*, so we may let v,(g) = vi(g). Using integers cy, -, ¢

with Z;:I pye; =1, H;:l vj(g)¥ = v(g)Ti=1 MY = v(g), hence

t

flag) = [15=15] (2,9) = T[] £ (2.0)

7=1
o ! —-m
t
= [T vi(9)” [T vite)"
=1 J=1
m—1
I1 Hf”’“’ (9".9) Hf”’c’(g
=1 ]
m—1

=v(9)” w(g)™™ [[ £(a",9)f (g™ 2);
1=1

thus every F-class of G is (F, f)-regular.

Theorem 3 implies that when G is a nilpotent group and f €
Z*(G,F*), if the number of irreducible representations of cach Sy-
low subgroup Y, of G (over F) equals that of irreducible fy, -
representations of Y, then the number of irreducible representations
of G equals that of irreducible f-representations of G.

COROLLARY 4. Suppose that G = HK is a central product of two
subgroups H and K, and suppose that we choose a transversal S of
H in G as a subgroup of K with respect to which Cory g = Cor is
defined. If every F-class of H is (F,a)-regular for o € Z*(H,F*)
then every F-class of G is (F, Cor o)-regular.

Proof. Since S is a subgroup of K and HNK C Z(G), we may
apply Theorem 5 [4] to this case.

3. Regularity Conditions on Semi-direct Product

For a general finite group (. it is not known whether the converse
of Theorem 6 [4] is true, even when G is a semi-direct product and
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even when F' is the complex field C. In this section we shall consider
the same question over certain semi-direct cases and over C; such as
Frobenius groups and dihedral groups.

Let G be a Frobenius group with Frobenius kernel N and comple-
ment H. Then G =NH, NN H = {1} and H acts on the normal
subgroup N without fixed points, 1.e., HNH* = 1forxz € G- H
(here H* = z7'Hz). And we have Cg(n) € N and Cg(h) € H for
1#neN,15# he H. If |H|iseven then N is abelian and H
posesses a unique involution which is in Z(H).

THEOREM 5. Let G = NH be a Frobenius group with Frobenius
kernel N and Frobenius complement H. Suppose that |H| = 2 and
every class of N is f-regular for f € Z?(N,C*). Then every class of
G is Corn g f-regular, where Corp ¢ is defined by the transversal H
of N in G.

Proof. Since |H|is even, N is abelian and so we have that Cg(n) =
N foralln € N—{1}. Nowlet H = {1,h}. Since G == NU(U,eqH?),
it follows that

and Cg(h*) = H* = {1,h*} for z € G. Thus the pair {g;.g2) of

elements in G which commutes each other is one of the following:
(n,m), (R*,1). (R*,R")

where n,m € N. Hence (Corf)(g1,92) = (Corf)(g2,¢1) when g¢,¢, =
g291, thus every class of G is Corf-regular.

THEOREM 6. Let D, = {a,b | a" = b =1, ab™! = a7!) be a
dihedral group of order 2". If every class of (a) is f-regular for
f € Z*{(a),C*), then every class of G is Cor(,) g f-regular, where
Cor(ay g f is defined by a transversal (b) of (a) in G.

Proof. For odd n, D, is a Frobenius group witli Frobenius ker-
nel (a) and Frobenius complement (b) where |(b)] = 2, and the
assertion follows from Theorem 5. Suppose n = 2 is even. Then
D;,, = (a) (b) is a semi-direct product but not a Frobenius group since
Z(Dam) = (a™) = {1,a™}. It is easy to see that
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CG(a':) =Dy ifa=0o0ri=m,
Cola) = (a)  ifa' ¢ Z(Dam).
Ca(b) = Cg(a™b) = {1,b,a™,a™b},
Cglab) = Cg(a™*1b) = {1,ab,a™,a™*'b}, -,
and Cg(a™'b) = Ca(a®™'h) = {1, a™ b, a™, a*m™1b}.
In the case that g =a™, z = a'b, 0 < 1 < 2m:, we have
(Corf)(g.2) = f(a™ a)fa™,a™") = (Corf)(z,g)
If ¢g=a'h, z=am™"b, 0 <i<m,we have
(Corf)(g,z) = f(a',a™ ") f(a™*,a™") = (Corf)(z,g).
Hence (Corf)(g.z) = (Corf)(z,g)for all g,z € Dzm such that gr =
zg. This completes the proof.

4. Examples

The present section is devoted to constructing explicit examples
of groups for which the converse of Theorem 6 in [4] holds. Most of
previously known examples of the situation have been nilpotent groups,
the groups in this section are not nilpotent.

By a notation [g.z]c = ¢~ 1p=1gme™ g (o € §), we mean an

F-commutator of g and = in G. A subgroup generated by all F-
commutators is called F-commutator subgroup of G and denoted by
G'(F). If F = E an algebraic closure over F then lg,7]s = [g, ]
a commutator, and G'(F) = G' the commutator subgroup. Further
for any subgroup H of G and o € G = Gal(E/F) we write [H, Glo
for ([h,gle | h € H, g € G); if H= G then [H,G], = G'(F). The

following lemma is important for application.

LEMMA 7. ([2]) For a field F, the following are equivalent.

(1) Finding a group G with f € Z*(G,F*) such that f is not coho-
mologous to 1, o f) < oo, and every F-class of G is Dr -regular for
I =FIG.

(2) Finding a group H with a p'-cyclic subgroup A such that (4 € F*,
1# A C Z(H)NH'(F), and such that A contains no F-commutator
of H except identity.

In case F = C, the lemma was studied in [5]. We construct an
example of class of groups, which was studied while the second author
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was In Tufts University. The author would like to express sincere

thank to Professor W.F. Reynolds. Let F = C and

H :<h1’~~- s hio | [’Lilahl] = hs, Eh.’hhl] = he. [/14,h1] = hq,
[h31h2] = hg, [h4,h2] = hg, [h4,h3] = hjo, 9(hz‘) = Q>-

This group has been introduced in |1, § 3], and studied in [5]. Let
A = (hshiy). Then |H| = ¢'%, |A] =¢ and A C Z(H) = H' =
(hs, he, h1, hs, hg, h1o). For the sake of clarity, we divide this example
into five steps.

STEP 1. A does not contain any commutator of H except 1.
Take any elements h, r in H. We may let, once and for all,

(4.1) ho=h®. . k%0, z=hM.pbe 0<a b <y
Let k;j = a;b; —ajb; for 1 <1< j <4 Since H' C J(H),
(42) [h,LIYJ - h;klzhﬁ—klsh;k:4h;kzsh9—k24h]—bf?34.

If 1 # [h,z] € A then [h,x] = hih}, for some 0 < i <7 ¢g. Comparing
this with (4.2), we have (by modulo ¢) kiz = kya = -1, ki3 =
k14 = k23 = k24 = (). Thus k]2k34 - k‘lgk‘24 + k14k23 = 7,-2, whereas
kyoksa — kyskos + kiakas = 0, hence 1* = (0. However ¢ does not divide

12, this yields a contradiction.

Let L = H/A and consider the central cyclic group extension

H
(4.3) 1—>A—+H~+——1-—>1.

Vs
Then by Lemma 7, there is a noncobounding f € Z? L,C*) such that
every class of L is f-regular.

STEP 2. Any permutation 7 of {hy,hy, ks, hy} extends to an
automorphism of H.

Define 7 : H — H by 7(h) equals
T(h] )a1T(hz)a2T(h3)aaT(}L4)a4 . [T(hg),T(hl)]ab{T(llg), T(h])]a6
7(ha), T(R1)) ¥ {7 (hs), T(ho)] "8 [T ha), T(h2)]*®[T(ha), T(hs)] "1
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Clearly 7 is a well-defined bijection, and for 2 € H,

(4.4)
—La1 +bl az+by ag+bzia +by1azb+a +bg
ha =h@ b pgatbe poatba o tbepazb tas

. pesbitastbspash +ar+hrpasbatas+bspaibstagtbgpasbstaio+bio
he h3 hg hg hid .

Hence by applying 7 to hx, we have

7(hz) = T(hl)al+bl T{hgi)""“’T(hg)“:‘;+b37'(h4)““+b"

. [T(hg), T(hl )]112514 as+bg [7.(h3)7 T(hl )]aabl +ag+be

. [T(h4), T(hl )]aq b1+ a7+b7[7.(h3)’ T(hQ)]a3b2+as+bs

. [T(h4), T(hz)]““b”“g"'bQ [T(h4), T(hg)]a“b"’+“‘°+b”.
On the other hand, using the calculation similar to the one that yielded
(4.4), we have 7(hz) = 7(h)7(r).

Due to STEP 2, we define an automorphisin e of H such that

(4.5) e(hy) = hs, e(hy) = hy, e(hs) = hi, e(ha) = hy.
Then e(hs) = hyq, e(hg) = h;], e(h7) = hg ', e(hg) = h7_1, e(hg) =
hi' and e(hyg) = hs, hence €2 = 1, e(hshyg) = hshio.

Let T = H (¢) be the semi-direct product with multiplication hu -
xy = hz" - uy for h,z € H, u,y € (e), where «* means v~ 'zu. Then
(hu)™! = (h~1)*u, and we may consider H znd {e) as subgroups of
T. T is not nilpotent, A C Z(T), and e fixes hshg.

Consider another central cyclic group extension
T
(4.6) 1—»A—>T-—+Z——>1.
Since (e) is an operator group on H and since A is an (e)-invariant
normal subgroup of H, T/A is isomorphic to the semi-direct product

of H/A and (e) with respect to the induced action on H/A. Hence
the exact sequence (4.6) is isomorphic to

1——>A->H<e>—~»%(e) - 1.
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STEP 3. A does not contain any commutators of T of the form
[h,t] or [t, k] except the identity, for he H, t € T.

Let t = 2y (z € H, y € (e)), then y must be either 1 or ¢, and
[h,t] = B ((z 7" )¥y)h(zy) = h™'hY - [h,z])¥ € H.

If y = 1 then [k, t] = [h, 2] a commutator of H; this is reduced to STEP
1. Let y =e. Then for any h and z as in (4.1),

h-lpe — hl—(al —aa)h;(az—aq)hgl —aj h;l;g—ﬂ4
.ha2(al —03)—as+010h
5

ag{a1—ag)+aiaz—2as ha4(ﬂl —az)tazag--ar—ag

6 7

.ha3(a2—a4)+a1a4—a7—a8ha4(a2—a4)+aga4-~2a9h~a4(a1 —aa) +ag—aip
8 g 10 .

Moreover by (4.2),
[h./ x]e - hl-okm hglshlgm h’l;za hgm hs—km .

Multiplying the above two equations, we have

[h,t] — h_lhe[h,a‘]e — htll3—~111h;4~'12h;1—a3h:112 ~a4
as(a; —ag)—as+ajo—kaq az(a; —ag)tajaz—2as+kis
e B
. ha4(a1“ﬂ3)+aaa3—ﬂ7—as+k23 ) ;103(112—04)+d1a4—ﬂ7—as+k14
7 '8

ag(ay—ayg)+asas—2ag+ka, —as(a; —a3)tas—aio—ki2
’ h9 ' hl(r .

Suppose that A contains a nonidentity generator of [H,T}, i.e., 1 #
[h,t] = hih}, € A. Comparing exponents, we have

(1) aj; —azy = a2 —ad4 = 0

(1) as—ap—Fkiz = 1 —as 4 ayp — k34 = 1

(111) ajagz — 2a¢ + k13 = 0, oy — 2(19 + k'24 =0

(IV) ajay ——a7—a8—+—k14 = 0, asagz — ay — ag+k‘23 =0

Here, (i) has been used to simplify the other congruences. The defini-
tion of k,j, and (i), (ii) and (iv) give rise to
—2% =kyg + kyy = ayby - ash; +ar1by — tobs
0= ]‘114 — k23 = a1b4 - azbl - a2b3 + (llbz,

hence 2¢ =0 (mod ¢). This is a contradiction since ¢ 1s odd. Thus A
does not contain any commutators of T of the form [k, t] except 1. Also



On projective representations of a finite group and its subgroups 11 743

since [t,h] = [h,t]7', the fact that 1 # [h, ] & A implies 1 # [t,h] & A.
Moreover A contains no generators of [H,T] or [T, H] except 1.
STEP 4. A does not contain any commutators of T except 1.

Let [r,t] for some r,t € T be any commutator in T and let r = hu
and t = zy for h,z € H, u,y € (¢). Then

(4.7) [ryt] = (R (™) h¥"2¥ € H.,

There are 4 cases for choosing y and u. If either y or u is 1, then [r,t]
is [r,z] or [h,t]; thisis STEP 3. Assume y = u = e. From (4.7) and
H'C Z(H),

[rt] = (h7'h%)" (7 '2¢) - [z, )" = (R7'R5) " (27 12%) - [h, 2]

We computed [h,z], R71h® and z~!'z°. Further we calculate
(h=1he)*
= hM1 a3 pda=as h;(w—aa)h; (az—aq)h;af;(al *aa)+as—ﬂ10hé‘ﬂf+2“6

2
—ajaztar+agy —ajay+artagy —a5+2ag; 0o(a; —aa)—as+ao
s hg he hyo :

and
(h=1h)° - (2-12)

_ h‘ll‘ —ﬂs—bl+bah;2—a4—bz+b4 h;a1+a3+bl —bs h;az+a4+bz—bq
.hs_(“?_a‘*‘)(bl_ba)"a‘*(al —ag)+tas—aro+by (b1 —ba)--bs+byo
‘héal —az){by —bz)—al+2a+by(by; —bs)+b; by—2be
'hgaz_a‘t)(bl_bg)’al as+ar+ag+ba{by —bz)+bobz—b; —bg
_h(sal —a3)(bz—bs)—arar+ar+tag+bs(by—bg)+b by—b; —bg
_h;ﬂz—44)(’32~b4)~a§+209+b4(52“b4)+52 by —2bg

'h—(az——a(;)(bl —b3)+a2(a1 -aa)—f15+a10—b4(b1—b3)—v-b5—-b10
10 .

Multiply this by [k, ] as in (4.2), then we have
[r,t] = (h_lhe)e (z71z¢%) - [h, 2]
— h?] —az—b +b3h;2—a4—b2+b4 h;al+aa+bx —b3 B a2 +as+by—by
.h;(az—h)(h—bs)—a‘;(a\—aa)+a5—a1o+b2(b1-—bs)*bs+blo~k12
'h(‘al —aa)(by —ba)—al +2ag+ba{bi —bs)+by bs—2bg—k;a

6
_h(ﬂz —~aq)(b1 —bg)—ajas+artas+by(by —bs)+bybs--br—bg—ky4
7
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_h(al —03)(b2~b4)—a1a2+a7+ag+b3(b2 ~bg)+b1bg—br—bg—kaa
8
_h(az—04)(52—54)—a§+2a9+bq(bz—ba)ﬁ’bzb-a“'lbe—ku
9
_h—(az'—ﬂ4)(51—b3)+az(fl1 —az)—as+tara—ba(by—bs)+bs—b o—ksa
10 '

Suppose that 1# [r,t] = hih}, for some i. Then
1) ai -0,3'—121 +63 = ag——a4~b2-+~b4 =0

2) (ag—az)(b;—bs)—as(ar—az)+as—uwio+ba(br—bz)- bs+bio—kiy =1
(ag—az)(b;—bs) +‘az(al—a3) as+ayo—ba(by—bs)+ bs—byg—kss =2

3) (a1 — az)(by — b3) — al + 2a6 + ba(by — b3) + biby — 2bs — k13 =0
(az — 04)(b2 - b4 — a + 2ag + by(by — by) + bzb4 - 21)9 —kyy =0

4) (az—ay4)(bhy —ajagt+ay+ag+biby+by(by—by)-bs—bg—kiy =0
( ( (

(ll—(lg) bg—b4 a1(12+a7+a8+b b4 +b bg—b,;) b']——bgw}tz;'-()

From 1), we have a; —a3 = b, — b; and ay — ag = H, — by (mod q).
By applying this to 2) and 4), we have
2t = —2(az —aq)(a; — ag) + (ag — ag)la, —az) + (by - by)(ay — az)
= —kig — kaa,
0 = by(by — b3) + baby — b3(by — by) — byby — ki + koy = —h1q + ks

However since 0 = (a; — ag)(by — q) — (a2 — ag)(iy — by) = ko +
kog— k4 +kzq (by 1)), we have —kig4+ ka3 = —kjp— k3., andso 2: =0
(mod ¢), which is contradict to ¢ > 3. This means that A contains no
generators of T except 1.

STEP 5. Finally, we have a situation of Theorem 3 for this group.

In(4.6),let T/A = G. Then by Leinma 7, there is z noncobounding
f' € ZYG,C*) where every class of G is f'-regular. Considering f’
together with f as in below (4.3); define isomorphisirts H/A — L by
hMA—l(le Lhye Hyand T/A - Gbyt,A— g (ge G.t,eT).
Then the 2-cocycles f and f' are indeed constructed by f = \a
and f' = ya', where y is a generator of Hom(A4,("*), and « and
a' are 2-cocycles in Z?(L,A) and Z )(G,A) respectively, defined by
ol l,I') = hiho k', a'(g,g') = tyty fg’ (refer to [2]). For any [ ¢ L,
we may choose h; = t, so that & = «. Hence f = ya = \(a)) =
(xa'), = f;. Therefore, we have the situation of Theorem 3 that for
f'€ Z¥G,C*), every class of G is f'-regular and every class of L is
f(= f})-regular. while L is a Sylow ¢ subgroup of G
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REMARK. For any element t = zy € T 'z € H,y € (e)), t*9 =
(zz¥)? = 1. Hence exp(T) = 2q. Therefore, if F is any field of
characteristic 0 that contains (3, then by choosing integer n divisible
by 2¢ and m(o), t™7) =tforallt € T, ¢ € G. Hence A contains no
F-commutators of T except 1; this is a family of examples with the F.
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