J. Korean Math. Soc. 33 (1996), No. 3, pp. 679-684

THE JUMP NUMBER OF BIPARTITE
POSETS FROM MATROIDS

HyunNG CHAN JUNG AND YOUNG-JIN YOON

1. Introduction

In this paper we try to investigate the connection between matroids
and jump numbers. A couple of papers [3,5] arc known, but they dis-
cuss optimization problems with matroid structure. Here we calculate
the jump numbers of some bipartite posets which are induced by ma-
troids,.

Let P be a finite poset and let a,b € P with a < b. Then b covers
a, written a < b, provided that for any ¢ € P, a < ¢ < b implies

that ¢ = b. A linear extension of a poset P is a linear order L =
x1,Z2,...,2, of the elements of P such that 2; < z; implies 1 < j.
A (P,L)-chain is a maximal sequence of elements zi, z9,....zx such

that z; < z3 < -+- < 2z, in both L and P. Let o(L) be the number of
(P, L)-chains in L. A consecutive pair (z;,z;4) of elements in L is a
jump of P in L if r; is incomparable to z;1; in P. Let s(L, P) be the
number of jumps of P in L. Then s(L,P) = (L) — 1. Let s(P) be
the minimum of s(L, P) over all linear extensions L of P. The number
s(P) is called the jump number of P.

In the following we will consider the basic properties of matroids as
known. However, to fix the terminology we give a brief survey of some
definitions. A nice introduction to matroid theory is given in Welsh’s
book [6]. The cardinality of a set 4 will be denoted by |A|.

A matroid is defined on a finite set E by a family of subsets of E,
called the independent subsets of E, that obey the following axioms :

(1) @ is independent :

(i1) any subset of an independent set is independent;
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(i11) for any set A C E, all maximal independent subsets of A have
the same cardinality.

The common cardinality in (iii) is called the rank of A . wrtten
r(A). A maximal independent set is called a base. A set which is not
independent is said to be dependent. The minimal dependent sets are
called circuits. For example, in graphs, bases are spanning trees and
circuits are simple closed paths. For all A € F the maximal set §
such that A C S C F and r(A) = r(5) 1s well defined, and this set
is called the span of A, written sp(A). If I C E i¢ independent and
e € sp(I) — I, then I U {e} contains a unique circuit, which we shall
denote C'(e, I).

Let M be a matroid over a set F, and let I be ndependent. The
(circuit) dependence poset DP(I) of I is a bipartite poset whose min-
imal[or maximal] elements are the elements of Ifor E — I]. There is a
comparability in DP(I) between e; € [ and e, € E — I if and only if
ey € sp(I) and ¢; € Cley, I).

2. Krogdahl’s approach

The complete graph on n vertices is denoted by K,. Although there
are different bases for K,,, the jump number of the dependence poset
of any base of A, is unique.

 — 1
THEOREM 2.1. For a base B of K ,,, we have s(D?(B)) = (n 5 )

F

Proof. Note that |B| = n—1. For a given b, € B, there exist b, € B,
e; € E — B such that {b1, by, e1} makes a circuit in K,,. Since B is a
spanning tree in K, for a given connected subset {;,b2, ... ,bx} of B
and for k > 2, there exists by € B such that by is adjacent to b; for
some i € {1,2,...,k}. Let ex € E — B such that {b;,bx4,ex} makes
a circuit in K,. Then we can easily construct a linear extension L of
DP(B) such that {(bg41,ex): k=1.2,...,n— 2} is a set of 2-element
(DP(B), L)-chains. Thus s{(DP(B)] < (2) —(n=2)-1= <n, ; 1).

o

On the other hand, since |B| = n - 1 for any linear extension L of
DP(B) the number of 2-element (D P(B), L)-chains is at most n — 2.

Hence s(DP(B)) > (g) —-(n—2)--1= (n ; 1)‘
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Let K, n denote the complete bipartite graph. Also, the jump num-
ber of the dependence poset of a base for K, , is independent of the
choice of the base.

THEOREM 2.2. Let min{m,n} > 2. For a base B of K, , we have
s(tDP(B))=(m—1)(n-1)+1.

Proof. Note that |[B] = m +n — 1. Since the complete bipartite
graph contains only even circuits, B contains {by,b;.b3} such that
{b1, b2, b3, €1} makes a circuit in K, ,. Since B is a spanning tree
in Ky, n, for a given connected subset {b,b,,...,b;} of B and for
k > 3, there exists byy1 € B such that bry; is adjacent to b; for some
1 €{1,2,... k}. Let e4_, € E-- B such that {;,biy, b;, ex—1} makes
a circuit in K, , for some j € {1,2,...,k}. Then, by the same tech-
nique as in the proof in Theorem 2.1, we can easily construct a linear
extension L of DP(B) such that {(bx41,€x—1): k=2,3,....m+n-2}
is a set of 2-element (D P(B), L)-chains.

Thus s(DP(B)) <mn—-(m+n-3)—1= (m~-1)(n—1)+1. Also,

by the same reason as in the proof in Theorem 2.1, we get s(DP(B)) >
(m—=1)}n—1)+1.

REMARK. We conjectured that s(DP(B)) is unique for any base B
of a simple graph. But this is not true. Fig.1 gives two different bases

By, B, of a graph G and s(DP(By)) # s(DP(B5)).
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3. New approach

Differently from the Krogdahl’s approach, we define a new poset for
an independent set in a matroid. Let M be a matroid over a set E. and
let I be independent. The adjacent dependence poset ADP(I) of I is a
bipartite poset whose minimal{or maximal] elements are the elements
of Ilor E — I]. There is a comparability in ADP(F) between ¢, € |
and ¢; € E — I if and only if ez € sp(I), e, € C(ey. I}, and ¢}, ¢y are
adjacent. In Fig.2, for an independent set I in a given graph G. we
give the two posets DP(I), ADP(I).

Although the definition of a dependence poset and that of an adja-
cent dependence poset are different, for any base B of K, we get the
same jump number.

THEOREM 3.1. For any base B of K,,, we have

S(ADP(B)) = ( ) 1).

L

Proof. Let B = {by,by,....bp_1} and let 1 <7 -2 j < n. For any
bi,b; € B, there exists a unique e;; € E — B such that {b;,b;,¢,;} or
{bisb;.€i5,bk,...,b;} makes a circuit in A,.

Then, by the same method as in the proof in Theorem 2.1, we can

easily construct a linear extension I of DP(B) such that {(b;.¢;) :
J =2.3,...,n—1} is a set of 2-element (ADP(B), L)-chains. Thus

s(ADP(B)) < (:) —{n—-2)~1= (” ; 1). Also. by the same reason

& 4

n—1
as in the proof in Theorem 2.1, we get s(ADP(B)) > (n 5 )

REMARK. Unlike the result in Theorem 2.2, stADP(B)) is not
unique for a base B of K, », where min{m,n} > 2. Fig.3 gives two dif-
ferent bases By, By of K3 5 and s(ADP(B;)) = 10 # 3 = s(ADP(B,)).

So far we have studied bipartite posets from matroids. What about
the other direction? That is, for a given bipartite poset P is there a
base B of a matroid such that P = DP(B) or P == ADP(B)? This
seems to be very difficult. But we can easily shew that there are
some structural properties. Let X be the minimal slements of P. If
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P = DP(B) for some base B of a matroid, then for any v € X the
number N of elements which cover v satisfies 2 < N < |B|. On the
other hand, if P = ADP(B) for some base B of a matroid, then for

any v € X the number of elements which cover v is 2.

References

1. R. A. Brualdi and H. C. Jung, Mazimum and minimum jump number of posets
from matrices, Linear Algebra and its Appl. 172 (1992), 261-282.
2. M. Chein and M. Habib, The jump number of dags and posets: an introduction,



684 Hyung Chan Jung and Young-Jin Yoon

Ann. Disc. Math. 9 (1980), 189-194.
3. U. Faigle and R. Schrader, Setup optimization problems with matroid structure,
Order 4 (1987), 43-54.

4. S. Krogdahl, The dependence graph for bases in matroids, Discrete Math. 19
(1977), 47-59.

5. M. Truszezynski, Jump number problein : the role of matroids, Order 2 (1985),
1-8.

6. D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976.

Hyung Chan Jung

Liberal Arts and Sciences

Korea Institute of Technology and Education
Byungchon, Chonan, Chungnam, 333-860, Korea

E-mail: hcjung@kitenms.kite.ac kr

Young-Jin Yoon

Department of Mathematics
Kunsan National University
Kunsan, Chunbuk, 573-360. Korea

F-maal: yoonyj@knusunl.kunsan.ac kr



