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CONVERGENCE RATE FOR LOWER
BOUNDS TO SELF-ADJOINT OPERATORS

GYou-BoNG LEE

1. Introduction

Let the operator A be self-adjoint with domain, Dom(A), dense
in ‘H which is a separable Hilbert space with norm || - || and inner
product < -,- >. We assume that A is bounded below so that the
lower part of its spectrum consists of a finite or infinite number of

1solated eigenvalues
A< A <<

each having finite multiplicity with A, the lowest limit point of the
spectrum of A. We denote such a class of operators by S. If A has
compact resolvent, we set A, = oo.

For the eigenvalue problem of Au = Au, it is used to apply two com-
plementary methods finding upper bounds and lower bounds to the
eigenvalues. The most popular method for finding upper bounds is the
Rayleigh-Ritz method, while that for finding lower bounds is interme-
diate operator methods. Another method for gerting lower bounds was
introduced by C. Beattie and F. Goerisch in 1991 which has an advan-
tage of using finite element trial function. We may call this method an
eigenvector free(EVF) method.

It is well known that if a sequence of bounded self-adjoint opera-
tors Ag converges to a bounded self-adjoint operator A uniformly, the
eigenvalues of Ay converges to the corresponding ones of A with the
convergence rates in [1,13]. In this paper we extend this result to the
sequence of operators in §. This will be applied to the sequence of op-
erators which come from the second projection method(SPM) so that
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we derive a new result of convergence rate for the SPM as well as for
the EVF method.

We denote by U the eigenspace of A corresponding to the eigen-
value A; = Aip1 = -+ = Ajym_1 with multiplicity m which is less
than A% | the lowest point of the essential spectrum of A,. Similarly.
U™ denotes the eigenspace of A, corresponding o the eigenvalues
/\gk), )\gfr)l, Cee Aii)m~l' We also represent the spectral projections of A
and A onto U and U'® as E and F} respectively.

In section 2 we review a result of Weidmann and the relevant theory
- for the finite element method usually used for differential eigenvalue
problems. With the aid of these results, we will provide sufficient
conditions for the convergence of eigenvalues and aso derive the cor-
responding rate for a sequence of semi-bounded operators in §. The
relation between the SPM and the EVF will be briefly intreduced in
section 3. Section 4 deals with application of the derived results to the
sequence of operator in the SPM so that we derive a convergence rate
for the method.

2. Convergence Rates for Semi-bounded Operators

We present an estimate of convergence rates for the sequence, {Ax}72,
of operators in § which converges to 4 in § as well as suflicient con-
ditions for the convergence of their eigenvalues. We introduce some
convergence rates for the sequence of bounded operators whose proof
may be found in [1].

THEOREM 2.1(BABUSKA AND OSBORN). Let (Ax) be a sequence
of bounded operators which converges to A uniformly. Then for any 1
and j = i,1+1,...,2+m ~1 and v € U, we have a sufficiently large

k such that

[Ai — A;k)| < max |((Ap — Au.u)|+C- max  |[(Ag — Al
uwel full=1 ' uweld fufl=1

for a constant C independent of k.

We would like to extend this result to the case of unbounded opera-
tors in §. The following lemma plays a crucial role in this section. The
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condition that )\(k) converges to \; is used to get a sufficiently large k

such that a circle lies in p( Ay ) enclosing only A; and {/\(k)}“Lm ', The
proof is almost the same as the proof of Theorem 2.1 in [1]

LEMMA 2.2. Let (Ay) be a sequence of bounded operators which
converges to A strongly. If forall i and j =4¢,i +1,...,i+m -1, )\E»k)
converges to A; as k becomes large, we have a sufficiently large k such
that

,\—/\ Ap — Au )|+ C - Ay — A®
! | < welhox 1!(( K~ Au, u)l e [(Ax — A)ul|

for a constant C independent of k.

Proof. We note that the spectral projectior. E associated with A
and A, is denoted by
1
— (A) dz,
T 27 )
r

where I' is a circle in the complex plane centered at \; which lies in
the resolvent set, p(A), of A and which encloses no other points of the
spectrum, o(A), of A and R.(A) is the resolvent operator of A at z,
ie. R,(A)=(z— A)~L Since A(‘k) converges tc A; as-k goes to oc for
g=1,2+1,...,i4+m—1, there i 1s a sufficiently large k such that T lies
also in p(Ax) enclosing only A; and {/\(k)}H'm !, Thus the spectral
projection E} associated with A and {/\(k)}’er " may be expressed

as

27
e

1 ;
Ek - /Rz(Ak) dz.
Hence for any u € U, we have

(21) B~ Bl = o / (Re(Ax) ~ Ru(A)udz)

™

IA

?)LH / R.(Ax)(A— AR (A)udz||
s
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1
< — (T - ms A - — Al
< 5 -l Hzlgz(lle(/lk)»l welpax N(Ax — A)ul]

- max R-(A)]| - ]|ul|

<(C- max
w&lU Julj=1

(Ak e A)H“

for some C independent of k& because R,(Ax) and R.(A) are uniformly
bounded on I". Here ¢(T") is the arc length of T'. Since A, converges to
A strongly with U as a finite dimensional space, E} converges to F on
the space U.

Let Ey : U — U™ be the restriction of By to the space Y. Suppose
that EAku = 0 for some uv € U. Then

lull = INE — Ex)ull < max  [|(Ex— E)v
veU Jjv|i=1

).

Since Ey converges to E on the space U, we have that « = 0. Since
dimi = dimu(k), it follows that E, : U — U™ is bijective. Further-
more

I <2
for k sufficiently large since for any « € U,
- 1
—||E < Ey— El| - <=z
ful = 1Beal < _max_ 0Bx — Ejol -] < 5l

for k sufficiently large. For convenience, let T} = E A:IA;CE;C. Then T}
1s an operator from U onto U having eigenvalues which are

o(Te) = {AVytm =t

jE=i

Let wy € U be defined so that Thw, = Agk)wk for some fixed 1 < 7 <
t+m — 1 and |jwf| = 1. Then

A= A = (A - Towg, wy).
Since E; ! Ey is the identity on U, we have for any v € U with |[o|| = 1,
(A= Tiv,v) = (B ExAv.v) - (B AgEro, v)
= (Ey'Ex(A — Ag)v,v)
= (I — E;VER) (A — A)v,v) — (A — A)v, o).
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Since EkE';] = | on U(k), we have that I — j@,:lEk = (I — Ep)(I -

E;'Ey) and (I — Exv = (E - Ex)v for any v € Y. It follows from
k .

(2.1) that

(I = E{'Ex)(Ae — Ao = (T - Ef Ex)( Ak — Ao, (E — Ex)o))|
< — E'Ef|l(Ax — A)|| - I(E — Ex)o|

<3C- max (Ap — A)qu
weld |luj|=1

for sufficiently large k. =

We now assume that Ay and A are bounded below such that A <
Aryr < Aforall k > 0.

DEFINITION. Let Ay be a sequence of self adjoint operators acting
on ‘H. We say that A, converges to 4 in the strong resolvent sence if
(Ay —z)~'converges strongly to (A —z)~! for some = which is bounded
away from the spectra of the 4, and A.

If Ay and A are all coercive, convergence in the strong resolvent sense
is equivalent to the strong convergence of A;’ to A7 We modify a
result of Weidmann[14] for our problem setting

LEMMA 2.3(WEIDMANN). Let (Ay) be an increasing sequence of
operators in § which converges to A in the rtrong resolvent sense.
Let /\gk) < /\,(zk) <l <L /\(Oﬁ) and A, < Ay < ... < Ay be the isolated
eigenvalues of Ay and A, respectively. Then for alli such that \; < Aﬁfi’,
/\Ek) converges to A;, where Aﬁ,‘i’ denotes the lowest point of the essential
spectrum of Ay.

It follows from Lemmas 2.2 and 2.3 that we have the following main
estimate result for a sequence of semi-bounded operators.

THEOREM 2.4. Let (Ay) be an increasing sequence of operators in S
which converges to A in the strong resolvent ser.se. Then for all i such
that \; < /\(32) , /\gk) converges t» A; as k becomes large. Furthermore
if A; has multiplicity m with \; = Aig1 = - = Xitm—y. we have the
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following estimate, for j = i,i+1,...,i+m — 1,

1 1 - -
NS i (A AT
J

+C- max |[(A;" — 4 Dl
veld jull=1

for a constant C' independent of k.

3. On the methods of Second Projection and EVF

In this section we describe briefly the SPM and the EVF method.
For more details on the EVF method, one should refer to [5] and for
the second projection method, refer to [3,16].

Let A be an opertor in S and let a(-) be the quadratic form which
is the closure of (A-,-). We assume that a self adjoint operator 4, in
S is taken to be such that Ay < A, and the isolated eigenvalues of Ag

(0) (0) 0)
NSy < <A

are known. We assume that the quadratic form a(u) is decomposed as
a(u) = ao(u) + [|Tull

where T is a closed operator on ‘H to another Hilbert space H,.
Let T* be the adjoint operator of T. We take a sequence of finite
dimensional spaces {Px} such that

P, C--CPyCPryy C-- CDom(T*) CH,

and let Py : H. — Pi be the projection that is orthogonal with
respect to the inner product (-,-),. We construct the intermediate
quadratic forms ax(u) as

ag(u) = ag(u) + || PyTull

for all v € Dom(ax) = Dom(ag) N Dom(T'), which may be associated
with a self-adjoint operator given by

Ay = Ay + TP T
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with Dom(Ax) =Dom(Ay). Then
Ag < A <A1 <A
For any positive constant 6, the operator Ay may be rewritten by
A= (Ao~ 6)+ (T*PT + 0).

Let Bz = T*P,T + 6 for each k. The operator B,f produces a new
inner product <B,€-, > = (-, -)bz on the Hilbert space H. Let a sequence

of finite dimensional subspaces {P}} be given such that

PrC CPuCPnup1 C--CH

and let P, : H — P, be the projection that is orthogonal with respect
to the inner product (-,-),s. We form the intermediate operators as
k

Akn = (Ao — ) + BLP,.

Then

4
A-0< Al < (A{;“’") < A.
’ A% 1

The eigenvalues of Ai,n converge from below to the corresponding ones
of A as k and n go to oo under some conditions [2,16]. The associated
n x n Weinstein and Aronszajn(W-A) matrix of the operator Az'n is
given by

(3.1) Win(X) = [(p: + RS 44 B{b:, Bip;)]

for i, = 1,...,n, where Rg is the resolvent operator, (4¢ — u)7!, of
Ao at p. If we let p = A + 6 and introduce the change of variable
g = RﬂBzﬁi into the W-A matrix (3.1), we get

1

Wia(A) = [(BY (Ao — p)qi, (Ao — 1)g;) 4 (g (Ao — p)g;)]
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c o o . —1
which is more simplified with a formula for Bf  (see [2]) to get

Wi n(A) =[{gi, (Ao — 1)g;) + ;-i—ﬂ((Ao — 1)q., (Ao — p)g;)
k
- Z <(A() - ﬂ)QiaT*Pl)Clm(T*Pma‘:Ao - :u')q]>}J

I,m=1

If we define the matrices as

Fi = [(gi, (Ao — p)gj)),  Fo=[{pi.pj).], H =[{{Ao— p)gi,T*p;)]
Gy = [((Ao — 1)qi, (Ao — )gy)], G2 = [(T"pi, T*pj)l,

then the W-A matrix is compactly expressed as
1
(32) Wk’"(/\):Fl+m{G] 'vH[(/iVA)FZ‘{’GQ]-—lH*}.

Based on this W-A matrix, Beattie and Goerisch introduced the EVE
method. For more general case, refer to [5].

THEOREM 3.1(BEATTIE AND GOERISCH). Let p and r be chosen so
that A®_, < u < A% Suppose that {p,}%. | C Dom(T*) and {q;}"., C
Dom( Ay) such that {(Ag — p)q;}™—, and {T*p;}%_, are jointly lincarly
independent. If the generalized matrix eigenvalue problem

F, 0 z G H T
o5 A () =@ el ()

has discrete finite eigenvalues ordered as
£1 <6< <0< <

then for each eigenvalue §, with p <. | we have a corresponding lower
bound to an eigenvalue of A;

1
u + o< )\rﬁp-

&p
We note here that if {g;}]-, and {p,;}5_, are chosen to have local
support as with finite-element trial functions, the resulting matrices
will be sparse and the matrix eigenvalue problem may be efficiently
handled using sparse techniques, even for quite large values of n and k.
The following theorem which shows the relation between eigenvalues

of the SPM and the EVF was proved in [11].
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. 1.
THEOREM 3.2. For any p with1 < p <, u+ ? i1s equal to the

P
1

(kn
(r — p)th eigenvalue, )\TAP ). of A, 5”.

This theorem means that the bound p + Z_ of the EVF method

corresponding to the (r —p)th eigenvalue of A is zhe (r—p)th eigenvalue
of the intermediate operator AY . With @ = — = which comes from the
SPM. Hence the convergence rate for the EVF “nethod is equivalent to
that of the SPM. It remains to get the convergence rate for the SPM.

4. Convergence Rate for the SPM
We represent in this section the inner product and norm of the
difference between the operators Azyn_l and A~! as the sum of norms
of projections I — Py and I — P?. Since
AT AT = Al T A Al A
— AL T~ POT + BY(I — PP A
we have
<(Azy,jl - A_l)u,u> - <Ai,!n”T*(1- Pk)TA-lu.u>
+ <4£ 'BIT - PPy A u. u>
The right-hand sides are expressed as following
| <AZ,N‘IT*<I - Pk)TA“lu,u> |
= 1{(1= P)TA™ " u (T - Pk‘ﬁAZ,n”u}* |
< (I = POTA ™ u||[(1 - POTAL, ull.
where
(I — Po)TA],,~ ull,
< INI = POTA™ ull. + [[(I = POT(A], " — A "l
< L= POTA  ull, +IT(AL, ™" - A7l

-1
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and

IT(AL, ™ — A ull,

< \\TAL, ' T*(I — POTA  u|l, + |ITAL, T BUT - PEA ul|,

<ITAL, I — POTA ||, +||ITAL,, ' BYI—P/)A~
< |ITAS, |21 = POTA "yl
=1 _1 1 ~
+ITAL, 2 ILIAL, 2B LI — POYA™ ull,q.

We have thus

h<A2,n_]T*(I_ Pk)TA”lu,u> |
= (1+ITAg, 1D — P)TA™ [}

_4i 1 L
+IITA0 2H 1A% P BRI = F)TA™ ull,
(L - P “||b2-

On the other hand

lu“*

|<Ak" BY(I— P)A~lu, u>| |<B,§(I—P")A.,-lu,Az,n”Q|

= | {(1 = PHA™ u (T = PHAL, u) Iy

< (T = PEYA g (T~ BAL,  ully
where

A -1
(I = PHAL Tl
<N = PHA  ullye + 11— POY(AL, ™ — A ullye

1

<= POA  ullyy + (AL, " = A7 Jullys
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and
AL, — A Yullyy = 1BLE (48, — A~
<|IBLF AL, 'T*(I - POTA |
+1BEF AL, BT - PPy A )
<IBEFAL, I AL TN (T - POTA ],
B AL, F B (T - PEA ull.
= 1BEE AL, H AL T T I - POTA L
T IBEE AL RPN - A .
Thus

(AL BII = PHA  u,u)|
S (1 + ”325‘42,71-3“2)'“[ - Pf?)“l—lu”ii

1 1 _1 ~
BT AL T IPHAL 2Tl (T - PHA™ ully
(I = POTA ..

1 11
If we let ||‘TAz!n_2 ll« = v and {[42,1 2BY?|| = u, then we have
~1 - 1 2
(Al =A™ u) | < T - PoTulf?

2y - o,
4 Sl = POTallL (L = PEyully

1+ p?
A2

I - Bl

because A~y = %u. We note also that

—1 _
(AL, = Al
148 " T*(I ~ POTA  ul| + ||AL, ' BYI - PA~"u]|

IA

< AL I = POTully + 1AL 71 12— PE el
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Finally it remains to show that the v and g are bounded by some
constants which are independent of # and n. Since BS < T*T + 8 and
Ay —-8< 49 , it follows that

¥ <|IT(Ao - 8) 2H and u < [((T*T + 6)2(4, A,9)~%H_

If we assume that T*T is relatively bounded to Ay, then T*T dnd
T*T + 6 are also relatively boundui to Ag — 6. Thus | T(4, — 6) 7|,
and [[(T*T + 0)3(A, — 6)~3% || are bounded by some constants. This

implies that the 4 and p are bounded by some constants which are

independent of k and n.

LEMMA 4.4. If T*T is relatively bounded with respect to Ag. then
7 and p are bounded by some constants which are independent of k
and n.

Combing together, we get the following result from Theorem 2.4 and
Lemma 4.4.

THEOREM 4.5. If T*T is relatively bounded with respect to Ay,
then
1 1 , S o 112
!'X'r-_—p ~ T SO PeiTullZ+ D - ([(1 = Pyl
r—p
FE N = PaTull. - (11 = Pljullyg

for some constanfs C. D and E which are independent of k and n where

/\(A ") u+ E which is corresponding to the k and n.
P
Let k and n increase simultaneously. That is, let & = n. If we
assume that

1 = Pu)Tull, = O(n=*) and [[(I - P)ullyy = O(n™?),

we have then
' 1 1
A

r—p

—| = O(n’”)
ool
Ay

where é = min(a, 3).
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