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ON COMBINATORICS OF
KONHAUSER POLYNOMIALS

DonaGst KiM

1. Introduction

Let L be a linear functional on the vector space of polynomials in z.
Let w(z) be a polynomial in z of degree d, for some positive integer d.
We consider two sets of polynomials, {Rn(z)}n>0, {Sn(2)}n>0, such
that R,(r) is a polynomial in z of degree n and Sn(z) is a polynomial
in w(z) of degree n. (So Sn(z) is a polynomial in = of degree dn.)
These two sets of polynomials are said to be biorthogonal with respect
to a linear functional L if

L(R.(2)Sa(z)) = 0 if and only if m # n.

DEFINITION 1.1. Polynomials {Rn(z)}n>0, {Sn(z)}n>0 satisfying
the above condition are called biorthogonal polynomials.

If w(z) = z then biorthogonal polynomials become ordinary orthog-
onal polynomials [4]. If the linear functional L is given by the integral
with respect to a weight function u(z) over an interval [a, 3], the above
orthogonality condition can be written as

8
/ Rp(2)Sn(z)p(z)de = 0 if and only if m # n.

When w(z) = 2¢ and the linear functional L is given by the weight
function z% ™% on (0,0c), which is the weight function of Laguerre
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polynomials, the biorthogonal polynomials determined by L are called
Konhauser polynomials, denoted {Y(a)(:c)}n>0 and {Z(a) ()}n>0, where

Vi (z,d) = (-1)" Z--Z( 1) ()a+3d)

r=0 =0

Z(z,d) = Z( -1) ( ) (a4 dtign_gz®

t=={)

where a; k), =[], l(a + k). Konhauser polynornials are introduced
in [2], 8], [9].

Combinatorial properties of orthogonal polynomials are studied ex-
tensively by many people. Laguerre, Hermite, Charlier, and their ¢-
versions are given combinatorial interpretations [5, [6], [10], [12], [13],
(14].

A combinatorial model for general biorthogona: polynomials based
on the recurrence relations is given in [7]. The model, however, does
not contain ‘good’ structures, because it depends on the recurrence
relations alone.

The purpose of this paper is to give a combinatorial interpretation of
Konhauser polynomials, proving their orthogonalitv by using a weight-
preserving sign-reversing involution. Note that an involution v defined
on a weighted set S with weight function w is called weight-preserving
sign-reversing if w(¥(a)) = —w(a) for all @ € S st. w(a) # a. This
paper uses the following well-known lemma several times.

LEMMA 1.2, If¢ is a weight-preserving sign-reversing involution on

S and F is the set {a € S| ¢¥(a) = a}, then

Z w(a) = Z wla).

aEsS aEF

Proof We partition S into orbits of ¥, i.e. into distinct {a,¥(a)}’s.
If ¥(a) # a, then w({a,¥(a)}) = w(a)+w(¥(a)) = 0. Hence the sum
in the left leaves only the orbits consisting of one element, ie. {a}’s
with (o) = a.
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In this paper, (a; k)n, (a)n, [a]. denote []7=' (2 + k), 155 (a+4),
[175, (a — i) respectively. Note that la], = (=1)*(—a),. We also use
the notation [n] for the set {1,2,... n}.

2. Konhauser polynomials

The weight function for Konhauser polynomials is p(z) = z%~*

and the n-th moment m, = (a),. It is known [3] that Y,fa)(x,d) has a
generating function

Z Y (2, dyw™ = (1 - w)~(1+a)/dgz=a(1-w)~ /¢

The biorthogonahty relation is

d™ml(a)gm, m=n
(Y, d), 2o, ) = { & (O |
‘ l 0 otherwise

where (f, g) denotes the integral [ f(z)g(z)z%€¢ " dz.
We begin with some properties of Konhauser polynomials. Let

LW = (-1 iﬂ 1) ( )(a+z)n iz’

L% is the Laguerre polynomial, which is equal to Yffa)(x, 1) or Z,(,a)(x, 1)
[4].
PROPOSITION 2.1. Y, " (z,d) = S0 L' where ¢; is the follow-

ing expression independent of a:

n—i—t

I [
M

! _..!
P t(z t)

Proof. Since i!(a);c; = (Y,f“’(:c,d),LE“)), we get
. _(“1)n+i : t 7 ‘ = (a)t+r L sf T .
C,—m ;(*1) (t>(a+t)z_.t§)—r!—§t—l) . (a+ s;d),

1]

:("_13"_1 Z(_mf(i) 3 @i i(—1)3<:>(a +s:d),

t=0 r=0 ' =0
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We can evaluate the inside double sum by using the difference iden-
tity [p. 103][1],

: k«\ k ;
Py = Yo Lk L(—l)kﬂ(i)mf).

k>0 BT

We choose F(r) = (a+ z:d),. and evaluate at # = —a — ¢. Since

(a+1t)p = (—1)*[—a — t],, we get the expression for c;.

PROPOSITION 2.2. Z\(z,d)nd = S2** b,L'"" where b, is the fol-
lowing expression:

(—1)n+i(a)dn Xn: (—’n)t(_dm

bi = (a); ¢!

t=0

Proof. This is similar to the previous proof and is omitted.

To interpret Konhauser polynomials combinatorially, we first inter-
pret moments (a), as in [Prop. 1.3.4, p. 19], 11], and generalize it
to interpret (a + s;d),. Any permutation of [n] can be represented
uniquely as a product of disjoint cycles. For a permutation o of [n],
define p and 7 as follows:

plo) = the number of cycles in o

(o) = n — (the number of cycles 11 o).

LEMMA 2.3. Let S, be the permutations of [n] = {1,2,....n}.
Assume that permutations are represented by disjoint cycles. Then

(a)p = Z a?l?),

€Sy

Proof. We use induction on n. When n = 1, it is obvious. Assume
that it holds for n — 1. We divide the set S, into two groups: one
group contains permutations ¢ where n forms a cycle of length 1, i.e.
o(n) = n, and the other contains permutations where n is contained
in a cycle with at least two numbers, i.e. o(n) # r. In the latter case,
there are n — 1 choices for o(n). Since (a), = (a)p_1(a +n —1) =
(a)p—1-a+(a)p_1-(n —1), it holds for n.
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LEMMA 2.4.
(a;d), = Z aP(?)dr(e).

oSy,

Proof. We use induction on n as in the previous proof. When we add
n to a permutation of [n — 1], if n forms a cycle by itself, then a factor a
is multiplied and if n is added to a cycle, then a factor d is multiplied.
So it agrees with the product (a;d), = (a;d)n_1(a + d(n — 1)).

We consider an element of S,, as a labeled directed graph, consisting
of directed cycles. For example, a permutation (12)(345)(6789) in
disjoint cycle notation can be represented by the following directed
graph:

1 2 Z '

4 5 7 8

Figure 1: A directed cycle: (12)(345)(6789)

To deal with (a + s;d),, for a nonnegative integer s, we consider
more general objects for which labeled directed cycles are a special
case. Let n, s be nonnegative integers. Consider o € S, as a set of
directed cycles. We imagine that we have s labeled boxes. Put some
of the cycles of ¢ in some boxes. Define U, , to be the set of these
objects. An element of Uj4 2 is shown below:

Box 1 Box 2

6
4 5 /\ 9 10
71'—% <

Figure 2: An element of Uy4 ,

12 13

As we can see, if we ignore boxes then any element of U, , is an
element of S,,, so that we can define the weight on elements of U, , to
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be the weight of elements after ignoring the boxes. A precise definition
of weight is given below. We show as before that:

LEMMA 2.5.

(a+s;d)p = Z a”(”’)dr(”“,

ocly, ,

where o' denotes the object after deleting boxes and their contents,
and ¢ denotes the set of cycles in the object. (The element in Figure
2 has weight ad®.)

Proof. Similar to the previous case.

We now interpret Y,Ea)(_r, d) as a generating funcrion of some objects.
For convenience’ sake, we first interpret (~1)”‘n!}",£a)(;:c, d) instead of
Y,ﬁ“’(x, d).

DEFINITION 2.6. For a permutation 7 of a subset of [n], let # denote
the underlying set of 7, i.e. subset consisting of elements in 7. Let 4,
be the set of all ordered pairs (7.0), where = is a permutation of a
subset of [n] and o is an element in Un,s for some s, 0 < s < n — |7,
where the boxes in ¢ are labeled by some integers in [n] \ #. The
weight of (m,0) is given by (—1)°z"~I"lgP(e)gr(e") where ¢! denotes
the object after deleting boxes and their contents, and ¢’ denotes the
set of cycles in the object.

LEMMA 2.7. The weight generating function o’ A, is (—].)”n!era)
(z,d), 1e.

n!

r=0 8=0

Proof. The factor [n],_, counts permutations 7 of an r element
subset of [n] and (7) counts the number of different sets of labels chosen
from [n] \ #. So we can show that the sum is the weight generating
function of 4,,. We omit the details.
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The weighted set A, admits a weight-preserving sign-reversing in-
volution. The involution is described as follows:

Among labels of empty boxes and the integers which are in [n]\
7 but not chosen for labels, one chooses the smallest integer,
say k. If k is the label of an empty box, then delete that box
and make it ‘unchosen’, otherwise create an empty box with

label k.

This operation fixes an element or changes only the number of boxes
in 0 by 1, so that it is weight-preserving sign-reversing. From the
definition of this operation, it is clearly an involution. The fixed points
of this involution are (7,0) € A, such that ¢ has no empty box and
the number of boxes in o is equal to n — |7|. So we get the following:

(—1)"n!Y,£a)(:r,d) i1s equal to the weight generating function
of the set consisting of (7, c)’s, where 7 is a permutation of a
subset of [n] and 0 € U, ,, —~|#| has no empty box and the boxes
in o are labeled by [n] \ #.

Since the fixed set consists of all the elements (7.o) where ¢ has
exactly n—|7%| boxes none of which is empty, we can interpret (-—1)"}",5&)
(z,d) directly, trimming the factor n! from the above set. If we just
ignore 7 and labels in ¢, then we don’t have the factor n! and the boxes
in ¢ will be distinguished only by their contents. The precise definition
follows:

DEFINITION 2.8. Let Y, be the set of partitioned permutations. A
permutation o is a partitioned permutation if its cycles are divided into
several blocks, at most one of which is empty. We distinguish a block,
called the principal block, from other blocks, called secondary blocks.
Secondary blocks are assumed to be indistinguishable, i.e. they are
distinguished by their contents only. Assume that only the principal
block may be empty but none of the secondary biocks can be empty.

The weight of an element in Y, is (_—x)kaldm, where k denotes the
number of secondary blocks and ! denotes the nuinber of cycles in the

principal block and m denotes n minus the nuraber of cycles in all
blocks (Figure 3).

THEOREM 2.9. (—1)"Y,£a)(r,d) is equal to the weight generating
function of the set Y,.
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Proof. Let o be an element in Y,,. Suppose o has r secondary blocks.
Then we can make n! objects in A,, from « by choosing 7, a permuta-
tion of n — r elements, and labeling r secondary blocks. These objects
are counted by (—1)"n!Y,$a)(x,d). Hence (—1)"Y,fa)($, d) is the gener-
ating function of Y,,.

1 6 11 14
A
4 5 Z \ 9( 10
2 3 7 "_“ks 12 13

Figure 3: An element of Y4 with two seccndary blocks
with weight (—1)*z2a%d®.

We now express (~1)"Z§la)(:c, d) as a weight gererating function of a
certain weighted set. There are nd colored boxes, d boxes for each color
i,1=1,2,...,n. We choose t colors and make permutations = with
d(n — t) boxes of unchosen colors. Distribute sorae of the cycles in 7
among dt boxes of chosen colors. Let Z, be the set of all these objects.
Put a weight w on o € Z,, by w({a) = (~1)talx‘“, where t is the number
of the chosen colors and [ is the number of cycles outside boxes. Then
the weight generating function of Z,, is equal to ‘~1‘)”Zf1,a)(.r, d). We
draw an element of Z,, below (Figure 4). Let n = 5 and d = 2. We use
labels 1,2:3,4;5,6;7,8;9,10 to represent 10 colored boxes, two boxes
for each color. Assume that only the second color, Color 2, is chosen,
i.e. the boxes 3 and 4 are chosen. We distribute some of the cycles
made with 1,2,5.6,7.8,9,10 into boxes of the chosen colors.

Box 3 Box 4

(This box is empty)

2 5 9 10

Figure 4: An example of Z,, of weight —az? (n=5,d=2,t=1).
Color 2 is chosen. Boxes 3 and 4 are two boxes of Color 2.
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Using these combinatorial interpretations for Y,ﬁ“)(:c, d) and Z;a)(_:z, d)
and a suitable weight-preserving sign-reversing involution, one can es-
tablish the orthogonality relation of these two polynomials combinato-
rially.

THEOREM 2.10. {Y,ga)(a:,d)}nzo and {Z,(la) (z.d)}n>0 are orthogo-
nal with respect to weight function p(z) = z%e™°

Proof. Let S, be the set of all triples (A, E,C) where A € Y,
B € Z,,, and C is an appropriate disjoint cycle described below. If A
has u secondary blocks and B has t chosen colors, then C € Syqa¢. C
is given the weight defined in Lemma 2.3. Since secondary blocks in A
are distinguished by their contents and dt boxes with chosen colors in
B are labeled, C is regarded as a permutation of « + dt distinct boxes.
Define the weight of (A, B, C) to be the product of the weight of each
component. It is clear that the weight of the set S, ,, is the integral

(Vi (e, d), 2. d) [12].

We define an involution ¢ on S, ., such that

(1) i w((A, B.C)) # (A, B.C) then w(¥((4, B.C))) = ~w((A. B,
C)), i.e. ¥ is a weight-preserving sign-reversing involution,

(2) if n = m, then the fixed set has weight d"n!(a)qn.

(3) if n # m, then the fixed set is empty.

Note that the sign of the weight of (4, B,C)is {—1)**". So the first
condition says that if (A, B, C) is not fixed by v then the parity of the
quantity u+1 is changed. We will achieve this objective in seven steps.

Step 1: We partition the set S, m into Uy Ty, where T, ; denotes
the set of all elements (A, B,C) ¢ S, m such that A has u secondary
blocks and B has t chosen colors. The weight of 77, ; has a factor (a +
dt)gm—ai(@)us i, which can be rearranged to give the factor (a)gm(a +
dt),. We can easily describe this rearrangement combinatorially. We
omit this description. After factoring out, we are left with the factor
(a+dt),.

We now regard this as the weight of the set of all objects obtained
by distributing cycles in a permutation of [u], representing u secondary
blocks in A, into one principal box and ¢ secondary boxes, representing
t chosen colors, where the weight of each cycle in the principal box is
a and the weight of each cycle in a secondary bos is d.
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Step 2: The set T, ;, can be regarded as the set of all objects (w, E, F)
where 7 is a permutation of dm boxes of all colors and E is an element
in Y;, with u secondary blocks and F is an element in the set described
above whose weight is (a + dt),, where [u] represents the u secondary
blocks in E and ¢ is the number of chosen colors. We define an invo-
lution ¥y on Uy Ty (Figure 5). Let (7, E,F) be an element in Tt
If all m colors are chosen and none of them is empty, i.e. each color
1s used at least once, then set ¢ (7, E, F) = (7, E F). Otherwise find
the least integer k among the labels of m — t unchosen colors in F and
the labels of chosen colors which are not used in F'. If integer k comes
from an unused chosen color, then make color k chosen, otherwise make
color k unchosen. Let v;(m, E, F) be the result of this change. This is
certainly a weight preserving involution and changes the parity of ¢ for
elements not in the fixed set of ;.

Color 2 Color 4

4 5 (This box is empty)

2 3 I

too

Figure 5: The F' component in an element (r, F', F) in Ty 4.
Integers 1 through 8 represent 8 secondary blocks in E.
Y1 will make Color 1 chosen in this case. (m =5,¢t=2, u = 8)

Step 3: We now examine the fixed set of ¢;. An element (m,E.F) €
Ty, is in the fixed set of ¥ iff t == m and all m colors are chosen in
F and each of the secondary boxes representing m chosen colors is
nonempty. Since the first component 7 is arbitrary we let F ,El) denote
the set of all (E. F) such that (7, E, F) is a fixed point of ¢y in Ty .,
for any permutation 7 of dm boxes. The weight of Sn,m 1s the product
of (a)4n, and the weight of F'V_ Recall that E has one principal block
and u secondary blocks and F has one principal bex and m secondary
boxes none of which is empty. We identify the u secondary blocks of
E with integers in [u] used in F. Then the elemen: (E.F) ¢ FMY will
be represented as (P, Q, R) where 7 is the principal block in E which
consists of cycles with elements in 'n] and Q is the principal box of F
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which consists of cycles formed with u secondary blocks in £ and R

1s the set of m secondary boxes of F filled with cycles formed with u
secondary blocks in E.

Color 1 Color 2

- = 7

\
1
* 3 4 2 3 % g _ L___\,;

z J & 9

Figure 6: An element (P, @, R) in FV.
Integers 1 through 9 represent 9 secondary blocks in Q.
Secondary blocks are filled with cycles with elements {5,...,15}.

(m=2,n=15,u=29)

Note that we can describe F" directly (Figure 6). We begin with
a permutation of [n]. Distribute the cycles of the permutation among
one principal block and u secondary blocks. The principal block may
be empty but none of the secondary blocks is erapty. The secondary
blocks are not labeled. They are distinguished by the contents in the
blocks. Form a permutation with u secondary blocks. Distribute the
cycles of the permutation among the principal box and m secondary
boxes. The principal box may be empty but non= of the m secondary
boxes is empty. Let F{" be the object made in this way. Let P, @),
R denote the principal block, the principal box and the m secondary
boxes, respectively. The weight of (P,@Q,R) € FY s (=1)yx*tmakd!
where k i1s the sum of the number of cycles in I? and the number of
cycles in @, cycles of blocks, and [ is the sum of n — & where a is the
number of cycles in (P, @, R) when we ignore boxes and blocks and the
number of cycles in R, eycles of v secondary blocks.

Step 4: We now describe an involution ¥, on U, 151). Let (P, Q, R)
be an element in F.'). We order the cycles with [n] by the maximal
integer contained in it. We will call a 1-cycle in @ ‘lonely’ if its only
second block comnsists of exactly one cycle formed with [n]. If P is not
empty or () has any ‘lonely’ 1-cycles, then choose the smallest cycle C
among the cycles in P and the cycles contained in secondary blocks in
‘lonely’ 1-cycles of Q. If C' comes from P, then form a new block with
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C' alone and put it inside Q as a ‘lonely’ 1-cycle. If C' comes from a
secondary block in a ‘lonely’ 1-cycle in Q, then delete the ‘lonely’ 1-
cycle from @ and add C to P as a new cycle. If P is empty and @ has no
‘lonely’ 1-cycles, then we do nothing. Let the result of this operation be
Y2 (P, Q, R). Let F(z) be the set of all element (P.Q, R) € F{" which
are fixed by v, (Figure 7). It is clear that v, is an weight preserving
involution and the parity of u changes for elements not in the fixed set

U, FLY

Block 1 Color 1 Color 2

L) /\

QL_%Q

L=
LR

3 4 3 4

Figure 7: An element (0, Q, R) in 17{?.
Integers 1 through 10 represent 10 secondary blocks in Q.
Secondary blocks 2 through 10 are filled with cycles
with elements {5,...,15} (m =2, n =15, u = 10)

Step 5: The fixed set U, F\\* ) consists of elements (P,Q,R) € U FY
such that P is empty and each 1-cycle of secondary blocks in Q consists
of a secondary block which contains more than one cycles formed with
[n], i.e. each cycle in Q contains at least two cycles formed with [n].
This fixed set is still too large for our purpose. We now define an
involution 3 on UuFéz). Let (P,Q,R) be an element of UuFl(LZ). If
there exists a cycle C' in @ or R such that either the secondary block
containing C has more than one cycles, or C' forms a secondary block
alone which belongs to a cycle of length greater than one, then choose
the largest cycle € among such cycles; otherwise define v3( P, Q, R)

(P,Q,R). Let U be the secondary block contalmng C. If U contains
only C, then contract the cycle containing U by ac ding € to the next
block after U in the cycle and deletmg the secondary block U/ from
the cycle; otherwise delete the cycle C from U and form a secondary
block consisting of C alone and insert it in the cycle before the block
U (Figure 8). Let the result of this operation be 31 P, Q, R). The map
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Y3 is a weight preserving involution and the parity of u changes for
the elements not in the fixed set. Let F,Es) be the set of all element
(P,Q,R) € F{¥ which are fixed by 3.

A\ A
=
Slm ()

Figure 8: A correspondence for ¢3. The 3-cycie is assumed to be
the largest cycle that can be moved.

Step 6: The fixed set UuF,ES) consists of (P, Q, R) such that P 1s
empty and each of the cycles in @ and R formed with the secondary
blocks is a 1-cycle and each secondary block censists of exactly one
cycle. Note that then (P,Q,R) € F,E3) implies that ) is empty as well,
because if (P,Q, R) is in U F{? then each cyele of secondary blocks
in @ should contain at least two cycles of [n]. So U FS®) consists
of (P,Q, R) such that P and @ are empty and each of the cycles in
R formed with the secondary blocks is a 1-cycle and each secondary
block consists of exactly one cycle.

Color ¢ Color ¢
Block b3 Block by Block by
i is

i Oﬂz isQﬂ
7 1 i3
Block b; Block b é % Block i Block

A\ A

Figure 9: A correspondence for 4. 7 is the largest and
i3 is the smallest in Color c.
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Finally we define one more involution v4 on U, F\*. Let (P,Q.R) €

FéB). If each of m secondary box consists of exactly one cycle which
in turn consists of exactly one cycle of length one. i.e. each secondary
box contains exactly one integer, then define v4(P,Q.R) = (P,Q, R);
otherwise let a be the largest integer in [n] such that the secondary
box containing the integer a contains other integers also. Let Z be the
secondary box containing a. Let 3 be the smallest integer contained
in Z. If 8 is in the cycle containing «, say (a,...,c,53,.... y), then we
split the cycle into two cycles (a,...,z) and (3,.. ., y) and make two
secondary blocks with each of them and make two 1-cycles with each
of the two blocks; otherwise we combine two cycles (Figure 9). Let
the result of this operation be 44(P,Q, R). The map vy is a weight
preserving involution on (P, Q, R) € F{® and the parity of u changes
for elements not in the fixed set. The fixed set Va.m for ¢4 consists of
all the elements (P, Q. R) such that P and Q are emnpty and each of
m secondary boxes contains exactly one integer chosen from [n]. Since
each integer in [n] must appear in some secondary box in R, the fixed
set is empty unless n = m. If n = m then V, ,, corresponds to the set
of all permutation of [n] where the weight is d” for each element. So
we get

d*n!, ifn=m,

0 ifn#m.

Step 7: By combining the steps, we can actually define an involution
v which satisfies the properties in the beginning of the proof. The
weight of the fixed set of ¥, equivalently the weight of Sn.m. is the
product of (a)y, and the weight of Vo.m. Hence we get

the weight of V,, ,, = {

d*"nl{a)gn, ifn=1n,

W(Snm) = { )
0 if n # .

This shows that Y,fa)(z, d)’s and Zfla)(w,d)’s are orthogonal.

3. Remarks

In this section we write the results of our experiments done in Maple.
Combinatorial interpretations of Laguerre polynomials give the lin-
earization coefficients of the product of Lg,a)(x)’s [6 . The polynomials
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ygrf)(';n, d)’s and Z,(la)(r, d)’s have combinatorial interpretations and the
linearization coefficients can be computed. We find, in experiments,
that Zsla)(r, d)’s have interesting linearization coefficients.

Assume that L denote the linear functional for Konhauser polyno-
mials.

e (Conjecture) Let Z(a) x, d)Z('” r,d) - (a) =34, z(z ,d).
Then A, is a polynomlal in a of constant 51gn

o (Conjecture) Let ¥;{* (2, d)Yi¥ (z.d) - - YiP(z.d) = 3 B, Y, (z,d).
Then B, is a polynomial in a of constant sign for all n > ng, for
some 9. What is n¢? For small n’s, even for & = 2, B,,’s are not a
polynomial in a of constant sign.

o (Guess) L Z(a)(.l dy Z(a)(:r, dy)--- Z,(IZ)(:E, dy): is a polynomial in a
with nonnegative coefficients.

o (Guess) L(Y,Sla)(r, d, )Y(a (z,d;)-- -Y,E:')(x, dy)) 1s a polynomial in a
with nonnegative coeflicients, for d; < 2.

o {Guess) L(Yri]a')(r, dl)}’,ff)(.r, d.)-- Y(a)(:r, dy)) 1s a polynomial in a
with nonnegative coefficients. Even though we assume that d is a
positive integer, we can substitute —d for d sinice d appears in only
the coefficients of the polynomials.

Any proof, analytic or combinatorial, of the above will be interest-
ing. Orthogonality of Y,Ea)(x, d)’s and Z,(la)(z, d)’s follows from Propo-
sitions 2.1 and 2.2 and the orthogonality of Laguerre polynomials. But
the proofs of the propositions ar: not combinatorial. Combinatorial
proofs of them will be interesting.
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