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EVALUATE THE DISTANCE TO THE AFFINE
FUNCTIONS OF BOOLEAN VECTOR FUNCTIONS

Y. O. SunG, J. H. JeonG aNnp C H. SEO

1. Introduction

The Data Encryption Standard(DES)[3,8,9] was developed by an
IBM team around 1974 and adopted as a national standard in 1977.
Since that time, many cryptanalysts have attempted to find shortcuts
for breaking the system.The entire algorithm was published in the Fed-
eral Register[1], Boolean functions from GF(2") into GF(2) are com-
monly found in cryptographic applications. Usually they are designed
to be nonlinear and to produce a balanced output, and often one finds
the additional requirement that from knowledg: of the output bit it
should not be possible to reliably guess one or raore input bits. Con-
sider for example DES, where the S-box[2,7] in the encryption system is
originally defined as a device with n-bit input and n-bit output so that
2™ output vectors are some permutation of 2" inout vectors. Thus the
Boolean vector function of an n bit input/n-bit output S-box can be
considered as an injective function,whose domain and range are both
GF(2™). We can extend the definition of S-box for the case when the
number n of input bits is greater than the number m of output bits.
Then the Boolean vector function is from GF(2") to GF(2™) with the
additional requirement that the output should be balanced. In fact. in
DES, the S-boxes with 6-input/4-output are employed. We can even
further extend the definition of S-box by removing the condition that
the output should be balanced. The balanced Boolean vector function
is generally nonlinear. The linear function is easy to attack via dif-
ferential cryptanalysis. It is generally believed that the further away
from linear functions a balanced Boolean vector function is the more
difficult it is to attack the S-box. In the sense, w: are interested in the
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Boolean vector function which is furthest away from linear Boolean
functions[4] in view of the Hamming distance[5].

We have outlined the criteria[6,13] that IBM used to design the S-
boxes and permutation.These criteria were developed specifically to
thwart attacks based on differential cryptanalysis. A measure of the
success of IBM’s approach to the design of the S-boxes and permuation
is the enormous amount of chosen plaintext (in excess of 10'® bytes)
required by Biham and Shamir’s attack[6].

In this paper, the lower and the upper bounds or the maximumn dis-
tance to the Affine functions of Boolean vector functions and balanced
Boolean vector functions from GF(2") to GF(2™) are derived. In sec-
tion 2. we state some necessary notation and definit on.extend distance
concept to Boolean vector functions, in section 3,1he Boolean vector
functions of S-boxes in DES are investigated and the distances of the
Boolean vector functions of the 32  4-bit input/4-»it output S-boxes
are evaluated. In the appendix, the functions are tabulated and com-
puted the distance to Affine functions of each of the 32 Boolean vector
functions.The implementation has been done on a SUN SPARC-2 sta-
tion using C-language.

2. Preliminaries

We state here some necessary notation and definition in order to
compute the distance to Affine functions and construct DES like S-
boxes. Let & denote the addition over GF(2™) or the bit-wise exclusive-
or, | - | denotes the cardinality of « set. wt() denotes the Hamming
weight function,Cz(") denotes an n dimensional vector with Hamming
weight 1 at the i-th position.

DEFINITION 2.1. The Hamming weight of a word Cy,Cy,--- .Ch_q,
Ci € GF(2) is defined as the sum of the Hamming weights of its digits,
where

0 if C;=0
wt(C;) =

1 if C,#0.

Let f and g be Boolean functions from GF({2") which is n-dimensional
vector space over GF(2) to GF(2): GF(2") — GF(2). The Hamming
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distance d(f, g) between two Boolean functions f and g is defined as

(1) d(f,g9) = wt[f + g].

Now, we can extend this distance concept to Boolean vector func-
tions, namely F and G. Let F and G be m-dinensional vectors such
that each component of F and G is same Boolean function in GF(2m),
Then the distance between F and G can be defiqed as

(2) d(F,G) = [{z € GF(2")|F(x) + G(r) # 0}

To find the distance from a Boolean function f to Affine functions is an
interesting subject in the study of Boolean functions. Here the distance
Dy from a function f to Affine functions is defined as

(3) Dy = min{d(f,€)}.

where L, is the set of all Affine Boolean functions in GF(2"). Similarly
we can define the Hamming distance to Affine functions of a Boolean
vector function. Let F : GF(2") — GF(2™) be a Boolean vector
function. The Hamming distance Dp of a Boolean vector function F
to Affine functions is defined as

(4) Dp:m[in{d(F,LJ},

where L = ({1,4,,--- ,,) is an Affine Boolean vector function such
that £, € L,, forall:=1,2,--- .m.

For a Boolean vector function F = {f;, f,- - . fm}. the definition
in(4) can be equivalently expressed as

(5) Dp=2" —xngx{wt[l_]l(fi +4 ]}

Now, let us introduce the parameter d(n,m). Let F, m be the set of
all Boolean vector functions from GF(2") to GF(2™). Then d(n,m) is
defined as

(6) d(n,m) = ﬁ'relﬁ%m{DF}'
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Especially when m = 1, to find out d(n, 1) is equivalently to find out the
maximum of the weights of coset leaders in a first-order Reed-Muller
code[5]R(1,n) of length 2™,

For even values of n, the Boolean functions which achieves d(n.1)
are called bent functions[4] and it is known that

{(7) din,1)=2""" - 2V n is even.
For odd values of n, we have derived the following lower bound.
THEOREM 2.1. d(2m + 1,1) > 2d(2m, 1).

Proof. Let T = (xy,22, -+ ,Tsmy1) be in GF(2?™H) Set § =
(2, ,T2m+1). Then any Boolean function f(7) in GF(2?"*!) can
be expressed as

F(@) = 2,9(9) + h(Y),
and any Affine function £(T) in GF'(2?™*!) can be expressed as
UF) = cri + 47,

where g and h are Boolean functions in GF(2°™).c; is in GF(2) and
£, is an Affine Boolean function in GF(2%™).

THEOREM 2.2. d(2m + 1,1) < 2*m . gm—=1 _ 9

Proof. If d(2m + 1,1) > 2(2*™m~-1 — 2m=1) = 2d(2m,1) then it
means that for any Affine Boolean function ¢, in GF(2?™) and any
number ¢y, there exists some functions ¢ and h such that

(8) wtlh + 6]+ wilg + b+ 6 + ep] > 2(22m= _9m=1y,
Since inequality(8) should be satisfied for any ¢;, we may say that for
any ¢,

(9) wilh 4 ¢, <21

(10) wilg 4 h 46— ep] < 22

From(8)-(10), it can be concluded that Dy > 2™~ —2™ and Dy, >
2?2m=1 _ 9™ And in this case, the maximum of the LHS of (8) is no
greater than (22m~1! —2m—1 _ 1) 4 (22m—1 _ 1), Therefore

d(2m +1,1) < 22m 9=l _ 9 ).E.D.
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3. Evaluate Distance to the Affine Function of Boolean
Vector Functions with Balance Property

As mentioned in the introduction, the Boolean vector functions of a
S-box must satisfy the balance property. Let F : GF(2"} — GF(2m)
be the Boolean vector function of an S-box with 1:-bit input and m-bit
output. The balance property implies that the number of ¥ € GF(2")
such that F(T) = € is exactly 2"~™ for every ¢ € GF(2™).

In this section, we are going to investigate into the distance from the
Boolean vector functions to Affine functions. Let’s define the maximum
distance parameter D(n,m).

DEFINITION 3.1,
D(n,m) =mazp{min {d(f.€)}.

where F'is a balanced Boolean vector function from: GF(2%) to GF(2™).

As in section 2, let us first consider the case when m = 1. For the
even values of n, it is obvious that there exists some balanced Boolean

. i1 . amo2 .
function which is 272 apart from some bent functions.
Thus we have

(11) D(2m,1) > 2*m~1 _gm

Note that when m = 2, the equality in (11) is achieved, i.e. D(4,1) = 4.
Therefore we can have the following lower bound.

THEOREM 3.1. For even n and m < %7
D(n,m) > (2™ — 1)(2"~™ — 2F -7+,

The proof of Theorem 3.1 is given by showing the existence of a
specific Boolean vector function of S-box which yields (27 —1)(2"~™ —
27 =™+1) as the distance to Affine function. Particularly (for m = %),
here is the construction.

First, construct m bent functions using Nyberg’s Construction meth-
od[7]. ie., let T7 = (21,22, + ,T2m-1) and 77 == (2,24, ,Tom),
then the Nyberg’s m bent functions f;(Z), = 1,2,--- ,m is given by

fi@) = A (@) o T2
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where A is the state transition function of a linear feedback shift reg-
ister of length m with a linear feedback polynomial.
Next, modify the each f; as g; = f; + h; where

71—1

h,‘(f) = T H (;1:2]-+1 -+ 1)

=0

Then wt[h;(F)] = 2™~! for all 7,and in the position where h;(T) = 1.
77 is automatically 0, so that f;(¥) = 0. Thus the modified function
gi 1s balanced and in fact G = (g; - - . gm) is also balanced,and finally
it 1s easy to see that

m
Zc, (gi 4+ x24)) :2 —am
=1
for any combination (¢y,¢2, -+ ,¢m). Thus Dg = (2™ — 1)(2™ — 2).

ExaMpLE 3.1. When n is equal to 4, m is equal to 2, and

fir =mwxg + 2324, fo = 2120 + 2223 + 2124.

zy 000000001 1111111

ro 00 00CGC111100001111

rzz3 001 1001100110011

gy 01 01010101010101

fi 000100010001 1110

f 000000110101 1001

g 0001110100011 110

g 010001110101 1001
gi+z, 0001 0G00100001000O01
g2+x4, 0001 0010060001100
gi+ga+2242x4 0000000000011 0 1

For odd n and m < 2 we can have a similar lower bound as follows.
2 i

THEOREM 3.2. Forn =2k + 1 and m <k,

n+3 .

D{in,m)> (2™ - 1)2"™ ™ - 272 ).
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In DES, there are 8 different S-boxes employed and they are all

with 6-bit input and 4-bit output. But in fact, each Boolean vee-
torfunction f; of an S-box §; can be decomposed of F(T) = (z9 +
D(zs + 1)Gio(9) + (2o + 1)zsGi1(F) + zo(zs + 1)Gi2(T) + z075G13(7)
where 7 = (21,72,23,74) and each of the four functions Gi;(9),
J =10,1,2,3, can also serve as a balanced Boolean vector function of
the 4-bit input/4-bit output S-box. In other words, the 6-bit input/4-
bit output S-boxes in DES are the combination of four 4-bit input/4-
bit output S-boxes. In the appendix, the functions are Gij, 1 = 5,6,
J =0,1,2,3 tabulated. Also we computed the distance D;; to Affine
functions of each of the 32 Boolean vector functions G ij-

4. Appendix
The Boolean vector function F;(F) of the i-th S-box S, is given by

Gin(ﬁ"“ -,1’4) Tg=0 =z5=0

Gz‘l(»’Fl«"“ ,x4) T =0 z5=1

Fi{(7T) = ’
) Gi(ry, - ,14) zo=1 z5=0
Gis(xy,- ,x4) zo=1 z5=1

and Gi; = {gij0, 9ij1, Gij2, Gij3}- The following is the table of gijk and

Dij = .DG’-j .

9500 =T1 + T4 + T1T3 + ToT3 + T3Tg + T1T3T4 + ToT3L4

9501 =T2+ 23 + T4 + 7173

gsoz2 =1+ 21 + 23+ 24 + 2104 + 2223 + 2224 + T34 + T1T213
+Z3ToTy + 212374 + ToT3Ty

9503 =T2 + T123 + 2134 + T2T4 + T3T4 + T1T224 + 22324

D50 :7

gs10 =1+ 21+ T2 + T3+ 2129 + 2324 + 212204 + 217374

gs11 =1+ 23+ T4 + 2129 + 1123 + a2y + T334 + 17273
'+‘$2.I‘3.Z4

gs12 =1+ 1 + 22+ 2123 + 2224 + 324 + 712374

9513 =T1 + T4 + ToT3 + T3T4 + T1ToT4 + T 17324

D5] :8
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9520 =T1 + Ty + ToXg + T3Tg — T 1Ty

gs21 =l+ 2o+ T3+ g + a2y + 23 4 237y
+T1Tyx3 + Lol 3ry

gs22 =1 + T2+ T4+ 71 T2 + 2173 + 217274 + 217374

g523 =T + T3+ I1X2 + Xa24 + T179T3 + T 17374

D5-2 :8

g530 =1 + 1+ T + T1rq + Toly + 3Ty + T1d2T3
+X T2y + T 1T3T4 + TpTaay

9531 =T1 + I3+ 210y + T3+ Torg + 12023

gssa =l+xo+ w3+ x4+ 2172+ 2124 + T1T2ay

gs33 =l +x )+ 23+ a4+ 2103 + 112203 + T 12204

D53 :8

geoo =1+ 1 + 24 + 1172 4 Tols + T3Ts + To2324

geor =1+ @y + 1 + 3+ 24+ 2123 + 214

G602 =Tz + 1Tz + Xy + X104 + T 12324

9603 =T + 24 + T1T2 + 2123 + 273 + 12273 + T2T374

Dgo =9

goro =l + a1+ 29 + T3+ 317y + 2914 + 210075

ge1} =T1 + T2+ I3+ T+ X173 + ToTg + T1X3T4 + ToT3T4
ge12 =1 + T3 + T1I9 + r1Ty + Loy + T3X4 + T1XoTy4 + T304
9613 =Ty + T4 + X177 + XT3 + T3y + 217374

D61 :8

G620 =14+ 2 + 29+ x129+ To.03 + Toxg + T324 + TpT3ly

9621 =T1 + X3+ T4+ L1Z2 + 1123 + TaTg + T37y
+T1r274 + 212374

G622 =1+ T2+ T3+ g4+ T12024

9623 =1+ T2 + T4 + 21 T2 + 7103 + Toxg + T3Ty + T 17273

Dsz :8
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9630 =T + T2 + 133 + T2T4T3T4 + 12204 + T12324
9631 =1+ 21+ 29+ T3+ 24+ 1173+ L1090

9632 =1 + T3+ Ty + 124 + Toly + 12324

G633 =1 + T2 + T4 + T9x4 + T3T4

Dgs =8
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