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ON THE VOLUME FOR TOTALLY REAL
SUBMANIFOLDS OF A KAEHLER MANIFOLD

TAE Ho KANG AND JIN SUk PAK

1. Introduction

One of the fundamental problems in Riemannian geometry is “How
the geometric invariants of Riemannian manifolds are influenced by the
curvature restriction ?7”.

In this note we shall study the volume of a totally real submanifold
P of a Kaehler manifold M and obtain an inequality for the relative
volume Vol(M)/Vol(P).

Now we recall the definition of n-mean curvature. Let (M, <, >
) be a Riemannian manifold of dimension m with metric < , >.
Let X,,---,Xn,Y be orthonormal vectors on M and II the n-plane
spanned by X;,---, X, . The n-mean curvature of Y and II is defined
by

K(Y,I):=)_ <R(Y,X)X;,Y >,
i=1
where we adopt the following definition for the curvature and the Rie-
mannian Christoffel tensor on M;

R(‘Y’ Y)Z = [VX7 VY]Z - V[X Y]Zv
RX.Y,Z,W) =< R(X,Y)Z,W > .

A submanifold P of an almost complex manifold (M, J) is called
totally real provided that the almost complex structure J of M maps
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tangent vectors to P into normal vectors. Let P te an n-dimensional
totally real submanifold of a Kaehler manifold (M, .7) of real dimension
2n. Let N be a unit vector field normal to P defined on an open U of
P. Let L be the Weingarten map of P associated to N. We define the
JN-normal curvature of P at p € U/, k n, as the normal curvature of
P at pin the direction JN te., kjn(p) =< LIN,JN > (p). We define
the JN-mean curvature of P at p by

1 nH — kjn
Hyn(p) = —=(trL = kn)(p) = N

7" — n--1

(p).

where H(p) is the mean curvature of P at p.

We denote by CP™(A) the complex projective snace of real dimen-
sion 2n and holomorphic sectional curvature 4, and RP"(\) the real
projective space with constant sectional curvature A. It is well known
that there is a natural embedding of real projective space RP™()) as
totally real, totally geodesic submanifold of CP™()).

The main result we shall prove is

THEOREM. Let M be a connected compact Kaehler manifold of
real dimension 2n with almost complex structure J and P a connected
compact totally real submanifold of M with dimension n. Suppose
that, for every p € P and every N .= SN, P

K(yn(t) H) 2 (n=1)A, K(yn(t, Vi) > (n=1)A,  Kpu(an(1) > 4A

and
kyn(p) =20, Hyn(p)>0.
Then
. / : ney
1) Vol(M) _ Vol(CP"())

Vol(P) = Vol(RP*(\))’

where the holomorphic sectional curvature Ky of a 2n-dimensional
Kaehler manifold (M, < , >,J) is the restriction of the sectional cur-
vature of M to the holomorphic planes, and SN, P denote the fibre of
the unit normal bundle SNP at p € P.
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2. Preliminaries

Let M be a Riemannian manifold of dimension m, P a submanifold
of M of dimension n (< m). We shall denote by N P(SN P) the (unit)
normal bundle of P in M, and NpP(SNpP) the fibre of NP(SNP)
at p€ P. Let p€ P and N € SN,P. Let yn(t) be geodesic of M
satisfying yn(0) = p, 7iy(0) = N. Let us denote by M;" the orthogonal
complement of v} (t) in T,y (yM. For Y € T, ()M, setting

R(t)Y := R(yn(1),Y) 7n (1),

then R(t) is a self-adjoint map of M;*.

From now on, M will denote a connected compact Kaehler manifold
of real dimension 2n with almost complex structure J. P will denote a
connected compact, totally real submanifold of M with dimension n.

Let p € P, N € SN,P. Let eg(p,N) :=inf {t > 0| yn(t) is a
focal point of P}. For every t € (0,es(p, N)), there is a neighborhood
U of yn(t) and a neighborhood V of p € P such that P(t) =UN{m €
M | d(m,V) =t} is a real hypersurface of M.

Let S(t) be the Weingarten map of the hypersurface P(t) associated
to a unit normal vector field N(t) defined on P(t) as an extension of
~4'(t). Let w be the Riemannian volume form of M, dp that of P and
dN that of the unit sphere $"7!(1). We can define a smooth function
On(p,t) on {(p,N,t) € SNP x R|0 <t <egp(p,N)} by

w(yn(t)) = On(z,t)t" TdN AdP A dt

Then the fundamental equations ([Grl, 2]) for the real hypersurface
P(t) of M are given by

(2.1) S'(t) = S(t)* + R(t), where §'(t) == V. 1S(t),

9 -
(2:2) 01’:8’2 =- [trS(t) + = : 1] ;

(2.3) }in(l)ON(p,t) =1.
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3. The estimates for the volume element

For pe P, N € SN, P, let {¢,}1<.<n be an orthonormal basis of
T, P such that ¢, = JN, and let {E;(¢)}1<i<n be narallel vector fields
along yn(t) such that E;(0) = e;,. Then E,(#) == Jy\(#). We shall

consider the following orthogonal direct decomposition of
T, M = H, @ Span {y) (1), Jyn(t) = iTu(t)} &b Vi

where H, := Span {E(t),-- ,E,. (#)}.

LEMMA 1. Suppose that, for every p € P, N € SN, P, Ky(v5(t))
>4\, K(yN(t), Hy) > (n = 1)A and K(v5 (%), Vi) > (n — 1)\, Then

(31) 9N(P~f)':/:/1N(/\aP7f)w

where pin(A,p,t) = [cos(VAE) - H“'N(P) sin(vV/At) )™ [cos(2V/At)

sin(\/Xt)] a-l

_han(p) in(2V/At)] x [\/Xt

2N

The equality in (3.1) is attained if and only if < Le,, e, >=<
Lejc; >=:43,1<1,5 <n—1, and with respect to {Ei} 1 <i<an—1, S(t)
and R(t) have the matrix form

(3.2)
S(t) =
AN B.
TTAN AN
n— 1
0
A8t
TTACNBD
B'(Mkywn,t)
T BNk t)
0 - /\cot(\/j\t)
n—1

—V/A cot(VAL)
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(/\

n—1

R(t) = 4

\ o)
where A(), 8,t) = [cos(Vt) — (% sin(\/Xt)]

B kyn,t) = [cos(2VAt) — (—22 ) sin(2V/At)).

\/_

and ' denotes the derivative with respect to t.

Proof. We adopt an elementary proof due to [G] which is essentially
the original proof of [Gr 2]. Let {e1, - ,en—1.€n = JN, €ny1 =
Jey, - ,ean_1 = Jen—1} be an orthonormal basis of N+ such that
the basis {e;}1<i<n of TpP diagonalizes the Weingarten map Ly of P
associated to N, where N+ is the orthogonal complement of the vector
space spanned by N in T, P. And let { Ei(t)}1<i<2n—1 be parallel vector
fields along yn(t) such that E;(0) = e,.

Let us consider the functions
(3.1) filt) =< S()Ei(t), Ei(t) > .

Taking the derivative of both sides (3.1), using (2.1) and the Cauchy-
Schwarz inequality, we get

(3.2) fi' > fi’+ < R})E,E; > .

Then the hypotheses K(v/ (1), Hy) > (n — 1)A, Ku(yy(t)) > 42X
and K(vy(),Vy) > (n — 1)\ imply

; ot , 1 ! \ 1 noloL2
(n——ltz:;fi) 2 (n lizzlf')—*_)‘ 2 (n,~1;fi) +4

(3.3) fn 2 244
( 2n—1 2n—1

Y ) 2 (g X A)

r—n+l i=n+l
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with fi(0) =< Lejep >, ¢ =1,- | n, respectively. Then [Grl] and
the first «m(l second inequalitics gives

(3.4) Z fit) > VAsin(Vt) + H cos(VAt)
n-1 cos(v/At) — (H sn /vV/A) sin(VAt)
a . ‘/—
(3.5) s 2VASnEVA) + kg cos(2VAY)

(‘()S(Q\/Xt) - (}.':JN/Q\/X) sin(Z‘\/Xt)

respectively and the denominators of the right hand sides of these in-
equalitics are positive from ¢+ = 0 to the first zeto of each one. For
t=n+1,---,2n -1 we have f;(0) = —oo. Then the third inequality
and [Grl] gives

1 —VA
3.6 > —
(36) n—1 i_zn;l f tan(v/At)
Then, from (2.2)
d -1 I n—1
= Apt) = — ¢ , RS D (F) — =
g mOn(pt) = — () + ——] E:j filt) = =

< (—(]]— In [(('os(v'Xt) - (I\{/JXII )" D (cos(2V/AH)

ol 8y
sm("\/_l‘ si : ))""1 ,

2\/—

from which (3.2) follows, taking account of (2.3).
If we have the equality in (3.1), then all inequalities in this pmof
must be equalities. The first equality in (3.3) implies f;( (t) = f;(t),
1,7 <n-—1,and < Le;, ¢, >=< Lej,e; >= 3. Equalities in (3.1), (3 4)
- (3.6) 1111})1y that E;(t) are eigenvectors of S(t) with eigenvalues

VA s \/Xz‘) + [ cos( \/Xt)
cos( VA1) — (/v ) sin(Vt)

(3.7) fit) =< 2V Asin(2v/A#) 4 k,,Ncos(zﬁt)_
cos(2V A1) — (kin/2VX)sin(2v/2t)

/\(‘()t(\/j\-f) for n+1<:<2n-1

for 1<i<n—-1
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The matrix form for R(t) follows from (3.7) and the equality in (3.2).
Q.ED.

REMARK 2. Let e.(p,N) := sup{t > 0 | d(p,yn(t)) = t}. Then
e(p,N) < ef(p,N) (see, e.g., [He]). f M = CP™()\)and P = RP"(}),
then Hn = 0, k,N =0, On(p,t) = ult) = [sm;?;f‘)]n—l cos(2V/At)
and e.(p,N) = 4\/- for any p € RP"(A) and N € SN, P.

Given a function ¢ : X x Rt — R, where X is a given space, we
denote by z(q) the function which to every # € X associates the first
zero of the function t — ¢(z,1).

LEMMA 3. Suppose that Hyny > 0, kyn > 0 on P. Then, for each
fixedp € P and N € SN, P,

pN(Apt) < p(t), 0 <t <z2(un(Ap,t)),

s
2(un(r, p,t)) < —
(hn(A pi 1)) i
Proof. Let g(t) = %—t—) Then ¢'(t) <0 for 0 <t < z(un(A p,t))

and g(0) = 1. The second assertion follows from the assumption.

Q.E.D.

4. Proof of Theorem

It is well known ([Gr 1, 2]) that 2(8n(p,t)) = ef(p,N). Then we
have from Lemma 1, 3 and Remark 2

ec(p‘N)
Vol(M):/ // On(p,t)t" ! N dP dt
0 Sn-1(1)

7’_
g/" ’ // w1 dN dp dt
Sn=1(1)

Vol(P /7 / / 1
_ t" " 1u(t) dN dp dt
VoI(RP"(/\ RPm()) Jsn-1(1)

VP e
- Vol(RP™())) Vol(C'P"(X)). Q.E.D.
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REMARK 4. (i) If the equality in (1.1) holds, then P is a totally
geodesic submanifold of M. (ii) If M = CP™()), then the equality in

(1.1)

holds if and only if P = RP™(\) (from [Ki]). If P = RP™()\),

then the equality in (1.1) holds if and only if M = C'P"()) (from [Na)).
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