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SOME CHARACTERIZATIONS OF RULED REAL
HYPERSURFACES IN A COMPLEX SPACE FORM

U-HANG KI AND YOUNG JIN SUH

1. Introduction

A complex n(>2)-dimensional Kaehlerian manifold of constant holo-
morphic sectional curvature c is called a complex space form, which is
denoted by M,(c). A complete and simply connected complex space
form is a complex projective space P,C, a complex Euclidean space C™"
or a complex hyperbolic space H,,C, according as ¢ > 0,c=0or ¢ < 0.
The induced almost contact metric structure of a real hypersurface M
of M,(c) is denoted by (¢,£,1,9).

Now, there exist many studies about real hypersurfaces of M,(c).
One of the first researches is the classification of homogeneous real
hypersurfaces of a complex projective space P,C by Takagi [13], who
showed that these hypersurfaces of P,,C could be divided into six types
which are said to be of type A, A3, B,C, D, and E, and in [3] Cecil-
Ryan and [6] Kimura proved that they were realized as the tubes of
constant radius over compact Hermitian symmetric spaces of rank 1
or rank 2. Also Berndt {2] showed recently that all real hypersurfaces
with constant principal curvatures of a complex hyperbolic space H,,C
are rcalized as the tubes of constant radius over certain submanifolds
when the structure vector field € is principal. According to Takagi’s
classification theorem and Berndt’s one, the principal curvatures and
their multiplicities of homogeneous real hypersurfaces of My(c) are
given.

On the other hand, let us denote by L, the Lie derivative with
respect to the structure vector field £. Then Okumura [12] and Montiel
and Romero [11] proved the followings respectively.
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THEOREM A. Let M be a real hypersurface of P,C.n>3. If it
satisfies

(1.1) Leg =0,

then M is locally a tube of radius r over one of the following Kaehler
submanifolds:

(A1) a hyperplane P, _;C, where 0 < r < /2,

(Aq) a totally geodesic PyC (1<ik<n — 2),wher: 0 < r < m/2.

THEOREM B. Let M be a real hypersurface of H,C ,n>3. If it
satisfies (1.1), then M is locally one of the following hypersurfaces:

(Ap) a horosphere in H,,C i.e., a Montiel tube,

(Ay) a geodesic hypersphere or a tube over a totally geodesic hyper
plane H,,_,C,

(A,) a tube over a totally geodesic HyC {(1<k<in — 2).

As an example of special real hypersurfaces of My(c), ¢#0 differ-
ent from the above ones, we can give some characterizations of ruled
real hypersurfaces in terms of the covariant derivative of the second
fundmental form.

On the other hand, Kimura |7] and Ahn,Lee and the second author
[1] obtained some properties about ruled real hypersurfaces of P, C
and H,C, n>3 respectively. In particular, an example of minimal
ruled hypersurfaces of P, C and H,,C, n>3 is constructed respectively.
Now let us define a distribution 7y by To(r) = [ueT, M : ulé(r)}
of a real hypersurface M of M, (), c#0, which 15 orthogonal to the
structure vector field £ and holomorphic with respect to the structure
tensor .

Let us denote by A the second fundamental form of the real hy-
persurface M of M,(c). Then we shall calculate the covariant deriva-
tive (V x A)Y of these ruled real hypersurfaces in section 3 and obtain
the Ty-component and £-component of (Vx A)Y, which are given by
g(VxA)Y,Z) = 0, so called 5-parallel second ‘undamental tensor,
and g((VxA)Y &) = f(X,Y) for any vector fields X,V and Z in T
and a certain 2-form f respectivelw.

On the other hand, Kimura and Maeda [8] and the second author
[1] gave some characterizations of real hypersurfaces of this type in
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M,(c), c#0 with the n-parallel second fundamental tensor and an-
other related conditions respectively. In this paper we consider the
&-component g((VxA)Y,€) = f(X,Y), X,Y in Tp, which is equiva-
lent to (VxA)YY=f(X,Y )¢ (modulo Ty — component), with which we
give another characterization of ruled real hypersurfaces. Namely, we
have the following

THEOREM 1. Let M be a real hypersurface of M,(c),c#0, n>3.
Assume that the structure vector £ is not principal. If there is a 1-
form 6 satisfying

(1.2) (A~ pA)X = 0(X)¢, XeTo,
and If it satisfies
(1.3) (VxAY=f(X,Y) (mod Tp), X,Y €Ty,

where f(X,Y) is given by (3.6), then M is locally congruent to a
ruled real hypersurface provided that n( A£) is not constant along the
direction of .

Now let us consider a condition L¢g(X,Y) = 0 for any X,Y in T,
which is equivalent to the condition (1.2) and weaker than the condition
(1.1). Obviously, by virtue of Theorems A and B real hypersurfaces
of type A satisfy this condition. But until now we do not know “what
type of hypersurfaces in M,(c) except the ones of type A satisfy the
condition (1.2)”. From this point of view and the motivation of get-
ting a Lie-derivative expression of ruled real hypersurfaces, by using
Theorem 1 we have the following

THEOREM 2. Let M be a real hypersurface of My,(c),c#0 and n>3.
If it satisfies

(14) Leg(X,Y) =0,
(1.5) 9((LeAB)X,Y) =0

for any vector fields X and Y in the distribution Ty and if the structure
vector field £ is not principal, then M is locally congruent to a ruled real
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hypersurface provided that n( Af) 1s not constant along the direction

of €.

In section 3 we recall some fundamental properties of ruled real
hypersurfaces of M,(c), ¢#0, and calculate the Ty--omponent and the
E-component f(X,Y) of (VxA)Y for any vector fields X and Y in T
respectively.

By paying attention to the £-component f(X,Y . a characterization
of ruled real hypersurfaces is given in section 4. That is, we shall prove
Theorem 1 in this section. Also in section 5 by using Theorem 1 we
shall prove Theorem 2 and give another result of real hypersurfaces of
type A which is related to this theorem. Also related to this result the
lincar transformation ¢ A is treated in the last section.

2. Preliminaries

We begin with recalling basic properties of real hypersurfaces of a
complex space form. Let M be a real hypersurface of n(>2)-dimensional
complex space form M, (¢) of constant holomorphic sectional curvature
c(#0) and let C' be a unit normal ficld on a neighborhood of a point
i M. We denote by J an almost complex structure of M, (¢). For a
local veetor field X on a neighborhood of z in M, the transformation
of X and C under J can be represented as

JX = o X + (X)), JC = —¢,

where ¢ defines a skew-symmetric transformation on the tangent bun-
dle TM of M, while 1 and ¢ denote a 1-form and a vector field on
a neighborhood of & in M, respectively. Moreover, it is seen that
g(€, X ) = n(X),where g denotes the induced Riemannian metric on M.
By properties of the almost complex structure J, tae set (¢,€,7.¢) of
tensors satisfies

¢t = T4k, ¢E=0, (eX)=0, n(é) =1,

where I denotes the identity transformation. Accorlingly, the set is so
called an almost contact metric structure. Furthermore the covariant
derivative of the structure tensors are given by

(2.1) (Vxo)Y =n(Y)AX — g(AX V), Vx{=0AX,
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where V is the Riemannian connection of ¢ and A denotes the shape
operator with respect to the unit normal C on M.

Since the ambient space is of constant holomorphic sectional curva-
ture ¢, the equations of Gauss and Codazzi are respectively given as
follows

(2.2)
R(X,Y)Z =§{9(Y, 2)X —g9(X,Z2)Y +g(¢Y, 2)¢X — g(¢ X, Z)¢Y
—29(¢X,Y)bZ} + g(AY, Z)AX — g(AX, Z)AY,

(23) (VxA)Y — (VyA)X = Z{n(X)eY —n(¥)sX - 29(¢X,Y)E},

where R denotes the Riemannian curvature tensor of M and VxA
denotes the covariant derivative of the shape operator A with respect
to X.

The second fundamental form is said to be n-parallel if the shape
operator A satisfies g((VxA)Y,Z) = 0 for any vector fields XY and
Z in To.

Next we suppose that the structure vector field £ is principal with
corresponding principal curvature a. Then it is seen in [4] and [9] that
« is constant on M and it satisfies

(2.4) AA = §¢ + %a(Aqb + $A).

3. Ruled real hypersurfaces

This section is concerned with necessary properties about ruled real
hypersurfaces. First of all, we define a ruled real hypersurface M of
M, (c),c#0. Let v : I—+M,(c) be any regular curve. For any {(€I) let
M,(ll_)1 (¢) be a totally geodesic complex hypersurface through the point
¥(t) of M,(c) which is orthogonal to a holomorphic plane spanned
by v'(t) and J4'(t). Set M = {.TGM::_)_I(C) : t€l}. Then the con-
struction of M asserts that M is a real hypersurface of My,(c). Under
this construction the ruled real hypersurface M of My(c),c#0,has some
fundamental properties.



106 U-Hang Ki and Young Jin Suh

Let us put A{ = o€ + U, where U is a unit vector field orthogonal
to £ and « denotes the function p(A¢) and F(S#0) the length of vector
field A€ — €. As is seen in [5], the shape operator A satisfies
(3.1) AU = ¢, AX =0
for any vector field X orthogonal to € and U. It turns out to be
(3.2) ApX = —fdg(X,9U),, ¢AX =0, XeTy,
which implies that
(3.3) g((Ad - dA)X,Y) =0, X,YeT.

Because of

Leg( X Y) = Le(g(X,Y)) — g(LeX,Y) ~ g(X, LeY)
=g(VxEY)+g(X,VyE),

the above equation is equivalent to
(3.4) Leg( X, Y)=0, X, YeT.

Next the covariant derivative (V x A)Y with respect to X and Y in
Ty is explicitly expressed. The equation (2.3) of Codazzi gives us to

(VyA) ~ (VeA)X = -_igﬁX.

By the direct calculation of the left hand side of the above relation and
using (2.1) and the second formula of (3.2), we ge:

do( X )€ + dB(X)U + %Q‘).X +BVAU = Ve(AX) 4 AVeX =0, XeTy.

Let Ty be a distribution defined by a subspace Tj(x) = {u€Tp(r) :
g(u, U(r)) = g(u,pU(r)) = 0}. Since AX is expressed as the linear
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combination of ¢ and U, from (3.1),(3.2) and the above equation we
can derive the following relations:

(8- X, X=U
0,

BV xU = X =¢U
—39X, XeTh
0, X=U
BX)={ F+5, X=gU
0, Xely.

Using these relations we can obtain the components of (VxA)Y, X,
Y € Ty, in the direction of £. In fact, we have

g(VxAY, ) = g((VxA)E,Y) = g(Vx(AE) — AVxE,Y)
= dﬂ(X)g(Ya U) + ﬂg(va, Y)7

which yields combining with the above equation that
(3-5) (VxA)Y = f(X,Y){, X,YeT,

where we put

(3.6)
fIX,Y) = B*{g(X,U)g(Y,8U) + g(X, ¢U)g(Y,U)} - %9(¢X,Y)-

From this formula we can consider two different components of (V x A)Y,
X,Y€eTy. One is the component of Ty, that is, g((Vx A)Y, Z) = 0, with
which Kimura and Maeda [8] and the second author {1] have studied
some characterizations of ruled real hypersurfaces. The other is the
component of £, which is given by g((VxA)Y,{) = f(X,Y) for any
X,Y in Ty. Thus the purpose of this paper is to give a new character-
ization of ruled real hypersurfaces with this condition.
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4. Proof of Theorem 1

In section 3 we have seen that ruled real hypersurfaces of M, (c)
satisfy the conditions (1.2) and (1.3). Thus in this section as a charac-
terization for ruled real hypersurfaces we ((’)nsid( °r a converse problem.
Let M be the real hypersurface of M,(e),c#0 and assume that the
structure vector is not principal. Then we can put A = of + BU,
where the function « is given by n(A€) and U is a unit vector field
m the holomorphic distribution Ty, By the assumption the function J3
does not vanish identically on M.

Now let us define a vector field V by V£ Then, from this definition
together with (2.1) 1t follows V = d¢l/. Now let vs prove Theorem 1
stated in the introduction.

By the assumption (1.2) it turns out to be

(4.1) (A¢ — o A)X = —gl X, V), XeT,
Then by using Lemma 2.1 in the paper (1] we have
g(VxA)Y. Z) = 6g(AX,Y)g(Z,V),

where 6 denotes the eyelic sum with respect to X, Y and Z in T, It
implies that the shape operator satisfies

(4.2) (VxA)Y =¢glAX . YI)V 4+ ¢g(YVIAX + g( X, V))AY

+ {fl (‘Yv }') o f’Z(Yw y')}é‘
for any X and Y in Ty, where f1( X, Y ) and fo(X,Y are symmetric and
skew-symumetric with respect to X and Y respectively. Then taking the

inner product (4.2) with £ and using (3.6) and the assumption (1.3),
we have fi(X,Y) = 0. Moreover, it is easily seen that

(4.3) f(X.Y) = —-%g(q‘)‘\'.y), X, YeT,.

Consider next the assumption (1.3). By combining (1.3) together
with (4.2) and (4.3) it reduces to

(4.4) (VxA)Y =g(AX, Y)V+g(Y.V)A X+.(](X~V)AY—%!I(@X,Y)f
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for any X and Y in Ty. Differentiating (4.1) covariantly and using (2.1)
and (4.4), we can obtain

(4.5)
(AX,AY) — ag(AX,Y)

- 29XY) = (X, V)g(¥. V) +4(VxV.Y) =0
for any X and Y in Tj, which yields that

because other terms of (4.5) except for the last one are symmetric with
respect to X and Y. Since we know that for any X €T

g(A2X — aAX — EX — g(X, V)V +VxV,£) =0,
(4.5) can be written as the following
(4.7)  A’X —aAX — gx —g(X,V)V +VxV =0, XeTo.
Let us define the covariant derivative VxVy A of Vy A by
(VxVyA)Z =Vx((VyA)Z) - (VuxyA)Z —(VYA)VxZ

for any vector fields X,Y and Z. Differentiating (4.4) and using the
definition of V xVy A, we have for any vector fields X,Y and Z in T

(4.8)
(VxVyA)Z
=g(¢AX,Y){Zat + apAZ + ZBU + BV U — APAZ
+ 702 - Bg(Z,U)V — 4(2,V)A¢)
+ g(pAX, Z){Yaf + agAY + YU + pVyU — AgAY
~ Bg(Y,U)V = (Y, V) A}
+ g((VxA)Y,Z)V + g(AY, Z)VxV +¢(Z,VxV)AY
+9(Z,V)(VxAY +g(Y,VxV)AZ + g(Y,V)(VxA)Z

- 29(8Y, 2)9AX,
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where we have used various equations obtained already in this section.
Now, we define here a Ty-valued 1-form h on the tangent bundle by

MX)={Xa—-ag(X,V)}{+{X3 - Bg(X,V)}U = Bg(X, U}V
+ Z(}SX + apAX — ApAX + gV U
for any vector field X in Ty. We shall verify that the equation
(4.9) gAY, Z)h(X) =0, X)Y,ZeT;
holds. In fact, by definition we get

(VAVyA)Z =VxVy(AZ)- (VxA)VyZ - A(VxVyZ)
- (viYA)Z ““““ (VyA)V\Z

from which it follows that the Ricci formula for the shape operator A
is given by

(VxVyA)Z —(VyViA)Z = RX,Y)AZ) - A(R(X,Y)Z).

Using (2.2),(4.4)~(4.8) and the above Ricci formulda, we get for any
X, Y and Z in T,

20(¢AX Y )R(Z) = g(¢AY, Z)h(X) + g(6AZ, X)h(Y").
Replacing X,Y and Z in the above equation cyclically,we get
(4.10) g PAX Y Z) = g(dAY, ZYW(X) = g(0AZ, X )h(Y).
Putting Z = X and replacing Y into ¢Y in (4.10), we have
(4.11) g(AX. Y)h(X) =0,
because of g(¢4X,X) = 0. Again, replacing Y into ¢Y in (4.10), we

have

g(AX Y )(Z) = —g(AY, Z)h(X
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Putting Z =Y in the above equation and using (4.11), we get
g(AY, Y Yh(X) = 0.

Accordingly, by polarization,we can prove that (4.9) holds.

Next, let My be an open set consisting of points z in M such that
##0. Then from the assumption the subset M is not empty.

In order to get our result, firstly let us consider our discussion on
the interior of M — My, on which =0 and therefore ¢ is principal.
Then we have

(Ad— $A)E = 0.

For any principal vector X in Ty with principal curvature A, the con-
dition (1.2) is reduced to A¢X = ApX + 6(X)E. From A€ = af the
inner product of A¢X and £ gives us to (X ) = 0. This means that

(4.12) Ap— pA =0

on the interior of M — M. It is seen in [4] and [9] that the principal
curvature « is constant on the interior of M — M, because this is a
local property. So it satisfies (2.4). Thus, if X is a principal vector
field with corresponding principal curvature A, then we have

(2A — @) AX = (-20- + a\)pX.
Using (4.12) and the above equation we get
22 — 20\ — = =
2a 5 0,

from which it follows that all principal curvatures are nonzero constant
on the interior of M — M.

Secondly,let us continue our discussion on the open set My, on which
we can consider the following two cases.

As the first case on M, we can consider a non-vanishing 1-form h
defined on the distribution Tp. Then (4.9) means that

(4.13) g(AX,Y)=0,X,YeT,
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on My. So, it follows from this and 1 1.2) that we get AX = g(AX, )€ =
Ag( X, )¢ for any X €Ty, which means that

(4.14) AX =0, AU = pé
for any X €T, orthogonal to U. Cousequently we obtain

g AGX.Y) =0,  ¢eAX.Y)=0, {.YeT

Ty. In this case let us prove that (4.14) also holds. 'Ltkmg th( inner
product of A X) and the vector £ and using (2.1), we have

do(X) = ag(X,V)- 20(AX, V), XeT,,
which implies that
(4.15) grad o = Vo = oV - 24V + w0, ATy,

where w = da(€). Accordingly it turns out to be do(Y') = —2g(AY, V)
for any Y in T, orthogonal to V. Differentiating this equation with
respect to X in Ty orthogonal to V' oand taking account of (4.7), we
have

NY(a) = 2{gU(Vy AV, V) 4 g(AV LY, V)
g ATXY) b ag(ATX,Y) + %q(AX, ¥

for any vector fields X and Y in Ty orthogonal to V. Taking the
skew- symunetric part of the above equation and using the equation of
Codazzi (2.3), we have

(XY - Y X))o = ~-29((VxY - VyX), AV

Substituting (4.5} into the above equation and wsing the fact that
(XY - YX}lo = ¢g(VyY - Vy X, Vo) to the obtained equation, we
SO

wglVal - Ve X )+ ag(VyY - Vy X V) =
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From this by using (2.1),(4.6),(4.15) and the assumption (1.2) we have
wg(AdX,Y) = 0.

From this and the assumption that the function a = 7n(A€) is not
constant alnog the direction of £ it follows g(A¢X,Y) = 0 for any
vector fields X and Y in T orthogonal to V. So we have by virtue of
(1.2)

AX = g(AX, )6+ g(AX,U)L.

Thus we see AU = 3£ + vU. Namely
AX = g¢(X,U)AU

for any vector field X in T orthogonal to V. By the assumption (4.1)
and the form of AU, we have AV = vV. Differentiating this equation
with respect to X orthogonal to £,U and V and taking account of (4.4)
and (4.7), we have

4dy(X)V = cyX =0,

which means that

AU = BE.

From these facts we have known that (4.14) also holds for this case.

By means of the continuity of principal curvatures, (4.12) and (4.14)
lead a contradiction. It shows that the interior of M — Mp must be
empty. Thus the open set M, is dense. By the continuity of principal
curvatures again we see that the shape operator satisfies the condition
(4.14) on the whole M. Accordingly, for any vector fields X and Y in
Ty we get

g(v)('y:{) = “Q(VXg,Y) = _g(¢AX’Y) =0

by (2.1), which means that V xY —Vy X is also contained in Ty. Hence
the distribution Tj is integrable on M. Moreover, the integral manifold
of Ty can be regarded as the submanifold of codimension 2 in My(c)
whose normal vectors are £ and C. Since we have

g(VxY,£)=g(VxY,£6) =0
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and

VXY, C) = —g(VyC.Y) = g(AX,¥) = 0

for any vector fields X and Y in T by (2.1) and (4.14), where V denotes
the Riemannian connection of M (c), it is seen that the submanifold
is totally geodesic in M,(c). Since Ty is also J-invariant , its integral
manifold is a complex submanifold and therefore ir is a complex space
form M,_;(c). Thus M is a ruled real hypersurface.

REMARK 1. Ruled real hypersurfaces in P,C and H,C with its
function n(A€) is not constant along the direction of £ are explicitly
described in [8] and [1],respectively. Moreover, Kimura [7] and the
second author [1] also constructed examples of minimal ruled real hy-
persurfaces in P,C and H,C, respectively.

REMARK 2. Kimura and Maeda [8] proved that for a real hyper-
surface M of P,C if the distribution Ty is integrable and if the second
fundamental form A is gn-parallel. then M is locally congruent to a
ruled real hypersurface.

5. The linear transformation A¢

In this section as an application of Theorem 1 we shall prove The-
orem 2 stated in the introduction. Namely, real hypersurfaces M of
M, (c), c#0 satisfying the conditions of (1.4) and (1.5) will be deter-
mined. First of all, let us investigate the conditions equivalent to the
assumption (1.5) of Theorem 2.

By definition the Lic derivative of the tensor A¢ with respect to £
1s given by

(LeA$)X = Le(AdX)  AY(LeX)
= (VeA)PX + A(Ved) X + AP(VeX)
= Vapx& — Ap(VeX — V()

for any vector field X. By using (2.1) again it gives us to
(LeAd)X =(VeA)6X + A{g(X,€)AE — g(A€, X)E}
— $A X + AP*AX
=(VeA)$X + gl X, ) A% — pA 9X — A*X
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for any vector field X. By the assumption ¢g((L¢A¢)X, Y) =0, X,
Y €Ty, we have

g((VeA)$X,Y) = g((A* + $A%$)X,Y), X,YeT,.
Replacing X into ¢X, we get
(5.1) g((VeA)X,Y) = —g((A’¢ — 9AT)X,Y), X, YeT

By (2.3) we obtain
(52) g(VxAEY) = g(VxAY.E) = ~g((A%6 — 647 4 Z4)X,Y)

for any X and Y in T,. Consequently it is seen that this condition is
equivalent to (1.5).

Under the assumption that £ is principal, i.e., A = af, where a is
constant it follows

(VXA)E = Vx(AE) — AVxE = Vx(af) — APAX
=a¢pAX — APpAX.

By this result combined with (5.2) we get
9((0dA — ABAIX,Y) = ~g((A%6 — $A” + 79)X.Y)

for any X and Y in Ty, from which together with the assumption of
A€ = o we have

adA — AGA + A%¢ — $A? + Eqﬁ = 0.
By (2.4) we get
(5.3) %a(d)A —A) + A% — ¢A® =0,
Thus we can show that (1.5) and (5.3) are equivalent to each other
under the situation that £ is principal. This means that the real hy-

persurfaces of type A satisfies the condition (1.5). So, conversely, we
prove the following
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PROPOSITION 5.1. Let M be a real hypersurfeces of M, (c), ¢#0,
n=>3. If £ is principal and if it satisfies (1.5), then M is of type A.

Proof. Let X in T, be a principal vector corresponding to prineipal
curvature A. Then,by (2.4), we get

AeX = po X,

where the principal curvature psatisfies

1
(22 - alp - ad+ e

By (5.3) we have
1
- :;(Y) == (),

(A — A+

which means that all principal curvature of M are constant. Conse-
quently, according to Takagi's classification theorem and Berndt’s one,
the principal curvatures and the multiplicities are piven.

Suppose that M is not of type A Then

1

We consider the case where the curvature e is positive. Without loss of
generality, we may suppose ¢ = 4. By Takagi’s classification theorem
we may take

& s
= 2001268, N = cot(d - 4) o= tan(d - -,

where 0 < # < £, Then we have

Lis
z
A pr= =20,
a contradiction.
I the case where ¢ is negative, we may suppose tiat ¢ = —4 without
loss of generality. Since M is not of type A, Berndt’s classification

theorem means that o < 4 and

o= 2anh26, A= cothf, o= tanhd.



Ruled real hypersurfaces 117

Thus we get
4
’\ + H=—,
e
a contradiction. This completes the proof. 0O

Lastly we shall prove Theorem 2 in the introduction.

Proof of Theorem 2. By the assumption g((£LgA¢)X,Y) = 0 the
equation (5.2) holds. So, it is deformed as follows:

(VX AY,6) = ~g((4°6 — 647 + ZH)X,Y)
= ~g(A(46 ~ SA)X + (A9~ 6A)AX,Y) - 2g(¢X,Y)
= ~g((Ad ~ SA)X, AY) — g(AX, (46 ~ pA)Y) ~ (X, Y).

By the assumption £¢¢(X,Y) = 0 the equation (3.3) holds. Thus we
have
(A — pA)X = —g(X, VL.
Accordingly we get
(5.4)

- c -
g(Vx A)Y.€) = flg(X.U)g(Y, V) + 9(X, V)g(Y,U)} — 79(¢X.Y).
By Theorem 1 it immnplies that M must be a ruled real hypersurface. [

REMARK 3. The ruled real hypersurface M of Mp(c) satisfies (1.4)
and moreover the last equation (5.4) holds. From these together with
the equation of Codazzi (2.3) it follows (5.1), which is equivalent to
the condition (1.5).

REMARK 4. If the real hypersurface M is of A-type or ruled, then
it satisfies (1.4). Moreover, it can be easily verified that the condition
(1.4) is equivalent to the condition g((Le¢)X,Y) = 0 for any vector
fields X, Y €T,.

6. The linear transformation ¢A

In relation to Proposition 5.1 the following proposition is proved
in this section. But contrary to Proposition 5.1 this proposition can
be acquired without the condition that the structure vector field £ is
principal.
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PROPOSITION 6.1. Let M be a real hypersurface of My(c),c#0,
n>3. If g( AL, €)#£0 and if it satisfies

g((LepA)X,Y) =0, X,YeT,
then M is of type A.

Proof. We can first calculate the Lie derivative L¢(¢A) of the struc-
ture tensor ¢ A with respect to £. By definition we have

(LepA)X =L (pAX) — QAL X
=(Ved)AX + ¢(VeA)X + AV X — Vyax
— ¢A(V X - VxE).
Consequently, by both equations of (2.1) it is reformed to
(LedA)X = Bg( X, UYAL — g(AX, AE+ d(VA)X, XeT,
Heuce, by the assumption of the theorem, it turns out to be
9(A(VeA) X, Y) = —3g(X, Uig(AL, ¢Y) = Bo(X UjgtY. V),
which means that
(6.1) gUVeA)X.Y) = gg(X U)g(Y, V), X.YeT.
Since the left hand side is symmetric with respect to X and Y, we have
Bg(X,U)g(Y, V)= gg(X.V)g(Y,U), X, YeT,.

Putting X = U and ¥ = V in the above equation, »e get 3 = 0, which
means that € is principal, 1.e., A == af, where the principal curvature
« 1s constant. From the property combined with (4.1) it follows that

(6.2) g((VeA)X,Y) =0, X,YeT,.
From (2.3) and (6.2), we have
JVXAEY) = ~Zal6X.Y), X.VeT,
On the other hand, we have
gUVxA).Y) = g(Vxi A0),Y) — g(AV XL Y)
= glaV &~ AVEY)

for any X and Y in Ty, because o is constant. By these equations
together with (2.4) we have

a(Ad — HA) = 0.
This completes the proof. [
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