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THE POINT SPECTRUM OF THE
LINEARIZED BOLTZMANN OPERATOR
WITH THE EXTERNAL-POTENTIAL
TERM IN AN EXTERIOR DOMAIN

MINORU TABATA AND NOBUOKI ESHIMA

1. Introduction

The nonlinear Boltzmann equation with an external-force potential

¢ = ¢(z) has the form,

(11) %§+Af=Q(f,f)-

This equation describes the time evolution of rarefied gas acted upon
by the external force F = —V¢. f = f(t,z,€) is the unknown function
denoting the density of gas particles at time ¢t > 0, at a point z € €,
and with a velocity £ € R%. Q is a domain C R? in which the rarefied
gas is confined. A and Q(-,-) are the following operators (see [1-2]):

A=E-V, -V Ve,
1
’h =5 B 9, ¢
Ry B CI 3
x {g(m)h(n") + g(n' h(n) — g(E)R(E') — g(&')h(£)}dE ds,
where 9(77) = g(t’ 1‘,77)a etc., n= 6_‘((§_£')'3)3a 77' = £’+((§—5,)'5)37

and cos@ = (ef"_f;,",s € §%. §? denotes the unit sphere whose center

is the origin. B(6,V) is a nonnegative known function of (8,V) €
[0, 7] x [0, +00). We will impose the following (see [1-2]):
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ASSUMPTION 1.1. ﬁ‘% < e (V+VeEY), where ¢y > 0 and

0 < € < 1 are constants independent of (8,V).

Under this assumption we linearize (1.1) around the absolute Max
wellian state M = exp(—E(x,€)), where E(x,£) = ¢(z) + Jﬂ; Substi-

. - i . . .
tuting f = M + M7Zwu in (1.1), and dropping the nonlinear term, we
obtain the linearized Boltzmann equation,

ou
(1.2) -0—;1 == Bu,
where B = A+ ¢ @K, and 4 = —A + ¢~ ?7)(—v). The operator

B is the linearized Boltzmann operator. v = v(£) is a multiplication
operator, and A" is an integration operator with a symmetric kernel. v
and K act on £ only. These operators satisfy the following (see [1-2]):

LEMMA 1.2. (i) There exists a positive constant ¢, o such that for
any £ € R?, 0 < w(£) < (1 + €]

(11} K is a self-adjoint compact operator on LZ(RE ).

(1i1) (~v + K) 1s a self-adjoint nonpositive operator on LQ(Rg).

(iv) The point spectrum of (—v+ K') contains 0, and the null space is
spannecd by £ exp (~ L%E)] =1,2.3, exp (—~J%K), and |[£]? exp («—-I%E)

where £; is the j-th component of £, j =1,2,3,ie, & = (£,£2,83).

It is important to investigate decaying of solutions of (1.2) (see [3,
p. 768], [4, p. 241], and [5, p. 1827]). For this purpose we need to
first inspect the point spectrum of B on the imaginary axis and the
corresponding eigenspaces. Because we can obtain estimates for the
decaying of solutions of (1.2) only in function spaces perpendicular to
the cigenspaces corresponding to rcigenvalues of I} on the imaginary
axis (ef. [1-2]).

In [6] we have already investigated this subject when Q = R*, and
by making use of the result in [6]., we have obtained decay estimates
for solutions of (1.2) (ef. [3-5]). In the present paper, we will study
that subject when Q is an exterior domain, i.e., when R* \ (Q U 09)
is a bounded domain. The main result is Theorem 4.1. The bound-
ary condition considered is the perfectly reflective boundary condition.
We assunie that the boundary 9€ is sufficiently sraooth, and that the
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traces upon 952 of functions contained in the domain of B are square-
integrable with respect to some measure on 9§ x R3.

In [6], the eigenvalues of B and the corresponding eigenfunctions
have only to satisfy the following:

(1.3) pv = Bu.

In this paper, we obtain u and v which satisfy (1.3), and moreover we
need to examine whether v satisfies the perfectly reflective boundary
condition or not. The forms of eigenfunctions of B are heavily re-
stricted by this fact, and hence we have to perform more complicated
calculations than those in [6].

However, for the same reason, some eigenvalues of B in [6] are not
eigenvalues of B in the present paper. As a result, the structure of the
point spectrum is simplified; the point spectrum is only equal to {0}
in the present paper.

This paper consists of 4 sections. §2 presents preliminaries. In §3,
we obtain necessary conditions for the point spectrum of B and the
corresponding eigenspaces. In §4 we prove the main theorem.

RMARK 1.3. We can also investigate, by the method developed in
this paper, the case where 2 is bounded. We will study this subject in
another paper.

ACKNOWLEDGEMENTS. The authors would like to express their deep-
est gratitude to Professor Shin-ichi Nakagiri, Kobe University, for his
helpful advice. This work was supported by Grant-in-aid for Scientific
Research 07640209, Ministry of Education of Japan.

2. Preliminaries

We impose the following on the domain  and the external-force
potential ¢ = ¢(z):

AssumpTioN 2.1. (i) R¥\ (Q U 99) is a bounded domain.
(ii) 9N is a sufficiently smooth surface,
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ASSUMPTION 2.2. (1) ¢ = ¢(r) is sufficient]ls smooth and real-
valued in Q, and 1s continuous in J€2 U £,

(i1) L¥*(Q) contains (“ﬂ;l, ox)e ”ﬂ:’ﬂ, and ]r]("“ﬂ;l‘

(111) There exists a constant ¢, 5 such that for any @ € Q ¢(x) > cq.9.

REMARK 2.3. (1) Assumption 2.1,(ii), and Assumption 2.2,(i) are
strong conditions. In fact, it 1s suthcient to assume, in place of them,
that Q2 and ¢ = ¢(x) belong to the C?*-class. However, to fully argue
conditions on the regularity of 9§t and ¢ = ¢(x) would carry us far
away from the main subject in this paper. Hence we accept them for
simplicity.

(11) Assumption 2.2,(i1) will be discussed in §4.

We define S; = {(«,£) € 02 » R, (-1Vn(z) € < 0}, j = 1,2,
where 1 = n(x ) denotes the outer unit normal of Q2 at « € ON2.

We consider our problem in the complex Hilbert space L2(€2, x RZ)
By L*(S;;p), we denote the space of square-integrable functions of
(x,€) € 5; with respect to p{x,§)dodE, j = 1,2, where p = p(r,€) =
In(x) & dcr, denotes an infinitesimal surface element of 0§21,

By D(L) we denote the domain of an operator L. We define D{A) =
{v=v(r,€) e LYQ, x RZ); Av € L*(Q, ng), and v = v(r, £) satisfies

the following boundary conditions:

(SI) (30l N, ) € L4(S3p), =2,
(PRBC) (1100 ))a.6) = (200 ). — 2n(z) - €l
for any (r,€) € 51}. v,, J = 1,2, denote the trace operators along

the characteristic curves, which are defined by the following system of
ordinary differential equations:

dr  dt
(2-1) ?I—f- = £, 9; = —=V¢(z).

75> 7 = 1,2, make functions defined in Q, x RZ correspond to those
defined in S;, 7 = 1, 2, respectively.

We similarly define D(A4) = {v = v(z,§) € LA(Q, x RZ); Av €
L*Q, x R), and v = v(r, ) satisfies (SI) and (PRBC)}. It follows

from Assumption 2.2,(iii) and Lemma 1.2,(ii) that ¢ “¢K is a bounded
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operator in L?(Q; x Rg) In virtue of this fact, we can define D(B) =
D(A).

By a(¢) (a(S1), respectively) we denote the set of all axes of symme-
try of ¢ = ¢(z) (2, respectively).

REMARK 2.4. (i) If v, £ - V,v € L%Q, x ]Rg), then v = v(x,£) is
absolutely continuous along the characteristic lines of € - V,. We can
construct the trace operators along the characteristic lines of £- V. See
[7, Chapter 2]|. Performing calculations similar to those in obtaining
these facts, we can deduce that if

(2.2) v, Av € L}(Q, x ]Rg),

then v = v(z, £) is absolutely continuous along the characteristic curves
of A. We can construct the trace operators v;, j = 1,2. In addition,
combining (SI) and (PRBC), and performing calculations similar to
those in [7, Chapter 2], we see that if v € D(A), then

(2.3) (v, Av) + (Av,v) = I (v) — I(v) = 0,

where the brackets denote the inner product in L*(Q, x Rg), and

L) = [ ole, 0 Opta, Odonde, T =1,2

i

(2.3) will play an important role in the next section.

(i1) By imposing (SI), we heavily restrict the domains of the oper-
ators. However, we immediately find it nearly impossible to obtain
(SI) from only (2.2), without imposing additional assumptions such as
the convexity of R?\ (U Q). Moreover it is very difficult to obtain
(2.3) from only (PRBC) without (SI), because there is a possibility
that I;(v) = +o00, j = 1,2. For these reasons, we will accept (SI).

3. Necessary Conditions

Let us obtain necessary conditions for ¢ and v € D(B) to satisfy
(1.3).
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LEMMA 3.1. Suppose that v = v(x,£) € D(F) is not identically
equal to 0, and that Re p > 0. If + and v satisfy (1.3), then

(3.1) == 0,
Av =0,

and v has the form,

3

(3.3) v = Z a;&; + as|€]* + as | exp (~§————(f)’£))

&

J=1

where E(r, £) = ¢(r) + LE—ZE The coefficients a; = aj(xr), 3 =1,...,5,
are complex-valued functions of r € §@ which satisfv the following (3.4-

6):

3

(3.4) a; = oy + Za]k.z:k. 7 =123,
k=1

(3.5) a4 1s a complex constant,

as = 2a3¢(x) + g,

where 3y is a complex constant. The coeficients aj, a5k, j, k = 1,2,3,
are complex constants which satisfy the following (3.7-8):

(3.7) Ok + Oy =0, k=123
(3.8): Define

(o, 3) = ((Re «y, Re aq, Re a3),(Re ag, Re gy, Re ),

((In oy, It evg, Im vy}, (Im @93, Im a3y, Im avyqg)).

If a(¢) N a() is empty, then (a,F) = (0,0). If ¢ = ¢(x) and Q have
only one common axis of symmetry, Le., if a(¢) () a(?) = {(}, then
(a, 3) satisfies 3//C and « = ~~ x 3 for any v € /. If both ¢ = ¢(x)
and § are spherically symmetric with respect to a point v € R, then
(ar, ) satisfies o = —v x (3.
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REMARK 3.2. We easily see that if a(¢) N a(2) is not empty, then
only the following two cases exist: (1) ¢ = ¢(z) and 2 have only
one common axis of symmetry. (2) ¢ = ¢(z) and Q are spherically
symmetric with respect to only one point.

Proof of Lemma $.1. Let us prove (3.1-3) and (3.5). Calculate the
L?-inner products of v and both sides of (1.3), and take their real parts.
Recalling that Re u > 0, and applying (2.3) and Lemma 1.2, we obtain
(3.3) and the following;:

(3.9) Re p =0,
(3.10) pov = —Av.

Substituting (3.3) in (3.10), and comparing the coeflicients of £;, £;&k,
&€l 7,k = 1,2,3, we obtain (3.5) and the following (cf. [6, p. 187]):

3
¢
(3.11) nas — a;— =0,
; ]a.r.j
6(15 6¢ .

12 > 2q— = =1,2,3,
(3 ) pHa; + afl'j 2a4 6:5, 0, J 3
(3.13) —gfli+—gﬂ_=0, J#F ko k=123,

Tk T ;
a .

(3.14) pag + 22 =0, j=1,23,
Oz

where the derivatives are those in the sense of distribution. (3.5) and
(3.11-14) are necessary conditions for (3.3) to satisfy (1.3).

By substituting (3.3) in (PRBC), we obtain the following necessary
condition for (3.3) to satisfy (PRBC):

(3.15) Vip-a=0, indQ,

where a = (a;)j=1,2,3- ¥ = ¥(z) is a real-valued function of z € R3
representing O in such a way that 8Q = {z € R®;¢(z) = 0}. The
existence of ¥ = () follows from Assumption 2.1 immediately.
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Let us prove (3.1) by contradiction. Assume that g # 0. (3.5) and
(3.12) give

_._._‘...._--—-—’-‘-_—b.(),y j*k7:1,2.3.

It follows from these equalities and (3.13) that

Oa; . A
— = (), k, Jhk=1,2.3
o 0 # 7,

These equalities and (3.14) give
(3.16) a; = —pagr;+ 35, 3 =1,2,3,

where f4,, j = 1,2,3, are complex constants. Let a; = 0. Substituting
(3.16) with a4 = 0 in (3.15), and solving the equation thus obtained
with respect to 3 = 1(z), we see that dQ is an unbounded cylindrical
surface.  This is contradictory to Assumption 2.1,(1). Let ay # 0.
Substituting (3.16) with a4 # 0 in (3.15), and solving the equation

unbounded conical surface. This is contradictory o Assunmiption 2.1.
Hence we obtain (3.1). (3.2) follows from (3.1) and {3.10) immediately.
Let us prove (3.4) and (3.6-7). Write (3.k.0) as (3.k) with g = 0,
k= 11,12,14. (3.5) and (3.12.0) g:ve (3.6). From (3.13) and (3.14.0)
we have
Da,

3.17 —— =0, j.k=1,273
(3.17) r /

Combining (3.17) and (3.14.0), we deduce that aj, 1 = 1,2, 3, have the
following forms:

(3.18)  a, = a, + aprk 4+ ojexe + yjeere, {4,000 = {1,2,3},

where o, o5, 046, and 55 are complex constants. Substituting (3.18)
in (3.13). and comparing the coeflicients of x;, j = 1,2,3, we obtain
(3.4) and (3.7).

Let us prove (3.8). Substituting (3.4) with (3.7) in (3.11.0) and in
(3.15), and noting that ¢ = ¢(x) and ¢ = ¢(x) are real-valued, we
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conclude that ¢ = ¢(x) and ¥ = ¥(z) satisfy equations of the same
form,

(3.19) V¢ -(a+zxf)=0,
(3.20) Vi - (a+zx ) =0,

where (a, 3) is that in (3.8). Let 4 = 0 in (3.20). Suppose that a # 0.
Then, 4 = (z) is constant on any lines parallel to a. This fact and
Assumption 2.1, (i), lead us to a contradiction. Hence, we have a = 0.
However, (a, ) = (0,0) satisfies (3.8).

Let 3 # 01in (3.20). Suppose that « is not perpendicular to 3. Then,
a is decomposed as follows: & = ag+ a1, ag # 0, ag//B, a1 LA. Since
there exists a  such that

(3.21) a; = -7 xf,
(3.20) can be rewritten as follows:
(3.22) VY (ag+ (x—7v) x f) =0.

The characteristic curves of this equation are helixes. In addition,
those helixes have a unique common axis which is parallel to 3 and
passes through 4. 1 = ¢() is constant on those characteristic curves.
However, this fact and Assumption 2.1,(1), lead us to a contradiction.
Hence, o L3, 1.e., @« = oy . Therefore, (3.21) gives

(3.23) a= -y x f3.
Substituting (3.23) in (3.19-20), we have
(3.24) Vé-((x—v)xB)=0, V¢ -((z-v)xp8)=0.

It follows from (3.24) that if 3 # 0, then both ¢ = ¢(z) and ¢ = (z)
are symmetric with respect to a line which is parallel to 8 and passes
through v. Making use of this fact and (3.23), and recalling Remark
3.2, we can obtain (3.8).
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4. The Main Theorem

By o, we denote the point spectrum of B.

THEOREM 4.1. (i) 0, N {p € C:Re p > 0} = {0}.
(1) If a(¢) N a($?) is empty, then the null space of B is spanned by

(4.1) EEE (0T
where E( ) = o(x) l%t
(iii) If ¢ = @(x) dnd 2 have only one commou axis of symunetry,
1e., ifa(¢) N a(§)) = {€}, then the null space of B is spanned by
(4.2) "5 Ee ) TFY ) ((ro ) x 0 TEE . L e

where by ((x —v) x €)° we denote the projection of (x — ) x € upon
the line (.

(iv) If ¢ = ¢(x) and Q are spherically symmetric with respect to a
point v € R?, then the null space of B is spanned by

(4.3) TFY B, TR, (e x€)je” Y, j=1.2.3,

where by ((x — ) x £); we denote the j-th component of (x — ) x &,
j=1,2,3.

Proof. Write V' as the set of all functions of the form (3.3) whose
a; = a;(x), j = 1,...,5, satisfy (3.4-8). Making use of Lemma 3.1,
we see thdt Tp N {/t € C;Re p > 0} C {0} and that the null space is
contained in V.

It follows from Assumption 2.2,(ii) that V C L%*(Q x R*). From
Assumption 2.2,(i), and Assumption 2.1, we see that all elements of V
satisfy {SI). Moreover, we easily deduce that if v € V| then v satisfies
(PRBC) and (1.3) with s« = 0. Hence, we deduce that 0 € o, and that
V is contained in the null space of B.

It follows from (3.4-8) that if ¢ and Q satisfy the conditions of (ii-
iv) of the present theorem respectively, then V' is spanned by (4.1-3)
respectively. Hence, we obtain the theorem.



Linearized Boltzmann operator 99

REMARK 4.2. (i) We note that the null space of B varies with the
common axes of symmetry of the external-force potential ¢ = ¢(x) and
the domain €. The existence of the eigenfunctions (4.1-3) is closely
related to the law of conservation of energy, to that of mass, and to
that of angular momentum around the common axes of symmetry of
¢ and Q (cf. {2, p. 159]).

(ii) If we do not accept Assumption 2.2, (ii), then the null space of
B vanishes or its dimension decreases. For example, if (E:;:l Bix; +

Bad(x) + 55)6‘1(22 is not contained in L?(Q) for any (81,...,0s) #
(0,...,0), then B has no eigenvalues on {y € C;Re p > 0}.
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