ASYMPTOTIC BEHAVIOR OF LEBESGUE MEASURES OF CANTOR SETS ARISING IN THE DYNAMICS OF TANGENT FAMILY $T_{\alpha}(\theta) = \alpha \tan(\theta/2)$

HONG OH KIM, JUN KYO KIM AND JONG WAN KIM

1. Introduction

Let $0 < \alpha < 2$ and let $T_{\alpha}(\theta) = \alpha \tan(\theta/2)$. T_{α} has an attractive fixed point at $\theta = 0$. We denote by $C(\alpha)$ the set of points in $I = [-\pi, \pi]$ which are not attracted to $\theta = 0$ by the succesive iterations of T_{α} . That is, $C(\alpha)$ is the set of points in I where the dynamics of T_{α} is chaotic. It is also related to the Julia set of the family of point-mass singular inner functions $\exp(\alpha \frac{1-z}{1+z})$ and is shown to be a Cantor set, a closed, totally disconnected, perfect subset of I in [KK1,KK2]. Since T_{α} has a slope $\alpha/2$ at $\theta = 0$ which is less than one, it has two more fixed points in I other than the attractive fixed point at $\theta = 0$. They are symmetrically located at $-\theta_0(\alpha)$ and $\theta_0(\alpha)$. See Figure 1. We denote the interval $(-\theta_0(\alpha), \theta(\alpha))$ by $E_0(\alpha)$. From the graphical analysis, the points on the interval $E_0(\alpha)$ are shown to be attracted to the attractive fixed point at $\theta = 0$ under T_{α} . Therefore, $C(\alpha) \subset I \setminus E_0(\alpha)$. Since the Lebesgue measure $|E_0(\alpha)|$ of $E_0(\alpha)$ tends to 2π as $\alpha \to 0$, the Lebesgue measure $|C(\alpha)|$ of $C(\alpha)$ tends to 0 as $\alpha \to 0$. We can say more precisely on the asymptotic behavior of $|C(\alpha)|$ as $\alpha \to 0$ in the following theorem.

THEOREM.

- (a) $|C(\alpha)| = O(\alpha^5)$ as $\alpha \to 0$, analytically.
- (b) $|C(\alpha)| = O(\alpha^7)$ as $\alpha \to 0$, by use of MATHEMATICA.

It is a reasonable conjecture that $|C(\alpha)|$ is of infinite order as $\alpha \to 0$.

Received September 17, 1994.

¹⁹⁹¹ AMS Subject Classification: 26A18.

Key words: Dynamics, Julia set, Cantor set.

The author was partly supported by TGRC(KOSEF).

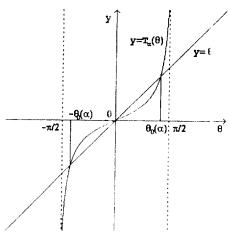


Figure 1

2. Analytical proof

Let $E_1(\alpha)$ be the set of points θ in $I \setminus E_0(\alpha)$ such that $T_{\alpha}(\theta) \in E_0(\alpha)$ (mod 2π). Then $E_1(\alpha) = \bigcup \{E_1^{(k_1)} : k_1 = \pm 1, \pm 2, \cdots \}$, where

$$E_1^{(k_1)} = \{ \theta \in I : T_{\alpha}(\theta) \in E_0(\alpha) + 2k_1\pi \}.$$

Let $E_2(\alpha)$ be the set of points θ in $I \setminus (E_0(\alpha) \cup E_1(\alpha))$ such that $T_{\alpha}^2(\theta) \in E_0(\alpha)$ (mod 2π). Then $E_2(\alpha)$ is given as

$$E_2(\alpha) = \bigcup \{E_2^{(k_1, k_2)} : k_1 = \pm 1, \pm 2, \dots; k_2 = 0, \pm 1, \pm 2, \dots\},\$$

 $_{
m where}$

$$E_2^{(k_1,k_2)} = \{ \theta \in I : T_\alpha(\theta) \in E_1^{(k_1)}(\alpha) + 2k_2\pi \}.$$

Inductively, we let $E_n(\alpha)$ be the set of points θ in $I \setminus \bigcup_{j=1}^{n-1} E_j(\alpha)$ such that $T_{\alpha}^n(\theta) \in E_0(\alpha) \pmod{2\pi}$. Then

$$E_n(\alpha) = \bigcup \{ E_n^{(k_1, k_2, \dots, k_n)} : k_1 = \pm 1, \pm 2, \dots ; \\ k_2, \dots, k_n = 0, \pm 1, \pm 2, \dots \},$$

where

$$E_n^{(k_1,k_2,\cdots,k_n)} = \{ \theta \in I : T_\alpha(\theta) \in E_{n-1}^{(k_1,\cdots,k_{n-1})} + 2k_n \pi \}.$$

Then clearly $C(\alpha)$ is given by

$$C(\alpha) = I \setminus \bigcup_{n=0}^{\infty} E_n(\alpha).$$

For an *n*-tuple (k_1, k_2, \dots, k_n) of nonzero integer k_1 and integers k_2, \dots, k_n , we set

$$\begin{split} \theta_1^{(0)} &= \; -\theta_0(\alpha) \;, \; \theta_2^{(0)} = \theta_0(\alpha), \\ \theta_1^{(1)} &= 2 \tan \left(\frac{2k_1\pi + \theta_1^{(0)}}{\alpha} \right) \;, \; \theta_2^{(1)} = 2 \tan \left(\frac{2k_1\pi + \theta_2^{(0)}}{\alpha} \right), \end{split}$$

and, inductively,

$$\theta_1^{(n)} = 2 \tan^{-1} \left(\frac{2k_n \pi + \theta_1^{(n-1)}}{\alpha} \right) , \ \theta_2^{(n)} = 2 \tan^{-1} \left(\frac{2k_n \pi + \theta_2^{(n-1)}}{\alpha} \right) ,$$

for $n=1,2,\ldots$. Then $E_n^{(k_1,\cdots,k_n)}=(\theta_1^{(n)},\theta_2^{(n)})$. Of course, $\theta_i^{(n)}$'s depend on the choice of k_1,k_2,\ldots,k_n but we suppressed its dependence for a notational simplicity.

Now, we estimate $|E_n(\alpha)|$ up to order 4 in its Taylor expansion at $\alpha = 0$. The following identities are easy to obtain.

2.1 LEMMA.

(i)
$$\sum_{k\neq 0} \frac{1}{(2k)^2 - 1} = 1$$
 (ii)
$$\sum_{k\neq 0} \left(\frac{1}{(2k)^2 - 1}\right)^3 = 1 - \frac{3\pi^2}{32}$$
 (iv)
$$\sum_{k\neq 0} \left(\frac{1}{(2k)^2 - 1}\right)^4 = \frac{\pi^4}{384} + \frac{5\pi^2}{64} - 1$$
 (v)
$$\sum_{k\neq 0} \frac{k^2}{((2k)^2 - 1)^3} = \frac{\pi^2}{128}$$
 (vi)
$$\sum_{-\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{4}$$
 (vii)
$$\sum_{-\infty} \frac{1}{(2k+1)^4} = \frac{\pi^4}{48}$$

To begin with, the leading terms of $|E_n(\alpha)|$ is generally given by

2.2 Lemma.

$$|E_n(\alpha)| = \frac{8}{\pi} \left(\frac{\alpha}{2}\right)^n + O(\alpha^{n+1}).$$

Proof. For an integer $k_1 \neq 0$

$$|E_1^{(k_1)}| = 2 \tan^{-1} \left(\frac{2k_1 \pi + \theta_2^{(0)}}{\alpha} \right) - 2 \tan^{-1} \left(\frac{2k_1 \pi + \theta_1^{(0)}}{\alpha} \right)$$

$$= 2 \tan^{-1} \left(\frac{2\alpha \theta_0(\alpha)}{(2k_1 \pi)^2 - \theta_0^2(\alpha) + \alpha^2} \right)$$

$$= 2\pi \cdot \frac{2\alpha}{\pi^2 ((2k_1)^2 - 1)} + O(\alpha^2).$$

For an integer k_2 ,

$$|E_2^{(k_1,k_2)}| = 2 \tan^{-1} \left(\frac{2k_2\pi + \theta_2^{(1)}}{\alpha} \right) - 2 \tan^{-1} \left(\frac{2k_2\pi + \theta_1^{(1)}}{\alpha} \right)$$

$$= 2 \tan^{-1} \left(\frac{\alpha(\theta_2^{(1)} - \theta_1^{(1)})}{(2k_2\pi + \theta_1^{(1)})(2k_2\pi + \theta_2^{(1)}) + \alpha^2} \right)$$

$$= 2\pi \frac{2\alpha}{\pi^2((2k_1)^2 - 1)} \frac{2\alpha}{(2k_2 + 1)^2\pi^2} + O(\alpha^3).$$

Thus we have inductively

$$|E_n^{(k_1,\dots,k_n)}| = 2\pi \frac{2\alpha}{\pi^2((2k_1)^2 - 1)} \frac{2\alpha}{\pi^2(2k_2 + 1)^2} \cdots \frac{2\alpha}{\pi^2(2k_n + 1)^2} + O(\alpha^{n+1}).$$

Therefore, by Lemma 2.1, we get

$$\begin{aligned} |E_n(\alpha)| &= \sum |E_n^{(k_1, k_2, \dots, k_n)}| \\ &= \frac{2^{n+1} \alpha^n}{\pi^{2n-1}} \left(\sum_{k_1 \neq 0} \frac{1}{(2k_1)^2 - 1} \right) \left(\sum_{k=-\infty}^{\infty} \frac{1}{(2k+1)^2} \right)^{n-1} + O(\alpha^{n+1}) \\ &= \frac{8}{\pi} \left(\frac{\alpha}{2} \right)^n + O(\alpha^{n+1}), \end{aligned}$$

where the first sum runs over all nonzero integers k_1 and all intergers k_2, k_3, \dots, k_n .

The Taylor expansion of $|E_n(\alpha)|$ near $\alpha = 0$ up to order 4 is given as follows.

2.3. LEMMA.

(i)
$$|E_0(\alpha)| = 2\pi - \frac{4}{\pi}\alpha - \frac{8}{\pi^3}\alpha^2 + (\frac{4}{3\pi^3} - \frac{32}{\pi^5})\alpha^3 + (\frac{32}{3\pi^5} - \frac{160}{\pi^7})\alpha^4 + O(\alpha^5),$$

(ii) $|E_1(\alpha)| = \frac{4}{\pi}\alpha - (\frac{2}{\pi} - \frac{8}{\pi^3})\alpha^2 - (\frac{16}{3\pi^3} - \frac{32}{\pi^5})\alpha^3 + (\frac{1}{6\pi} - \frac{80}{2\pi^5} + \frac{160}{3\pi^5})\alpha^3 + (\frac{1}{6\pi} - \frac{80}{2\pi^5})\alpha^3 + (\frac{1}{6\pi} - \frac{80}{2\pi^5$

(ii)
$$|E_1(\alpha)| = \frac{4}{\pi}\alpha - (\frac{2}{\pi} - \frac{8}{\pi^3})\alpha^2 - (\frac{16}{3\pi^3} - \frac{32}{\pi^5})\alpha^3 + (\frac{1}{6\pi} - \frac{80}{3\pi^5} + \frac{160}{\pi^7})\alpha^4 + O(\alpha^5),$$

(iii)
$$|E_2(\alpha)| = \frac{2}{\pi}\alpha^2 - (\frac{1}{\pi} - \frac{4}{\pi^3})\alpha^3 - (\frac{1}{6\pi} + \frac{2}{\pi^3} - \frac{16}{\pi^5})\alpha^4 + O(\alpha^5),$$

(iv) $|E_3(\alpha)| = \frac{1}{\pi}\alpha^3 - (\frac{1}{2\pi} - \frac{2}{\pi^3})\alpha^4 + O(\alpha^5),$

(iv)
$$|E_3(\alpha)| = \frac{1}{2}\alpha^3 - (\frac{1}{2\pi} - \frac{2}{\pi^3})\alpha^4 + O(\alpha^5)$$
,

(v)
$$|E_4(\alpha)| = \frac{1}{2\pi}\alpha^4 + \tilde{O}(\alpha^5)$$

Proof. From the relation $\theta_0(\alpha) = \alpha \tan(\theta_0(\alpha)/2)$ and $\lim_{\alpha \to 0} \theta_0(\alpha)$ $=\pi$, we have the following Taylor expansion of $\theta_0(\alpha)$ near $\alpha=0$.

$$\theta_0(\alpha) = \pi - \frac{2}{\pi}\alpha - \frac{4}{\pi^3}\alpha^2 + \left(\frac{2}{3\pi^3} - \frac{16}{\pi^5}\right)\alpha^3 + \left(\frac{16}{3\pi^5} - \frac{80}{\pi^7}\right)\alpha^4 + O(\alpha^5).$$

Therefore,

$$|E_0(\alpha)| = 2\pi - \frac{4}{\pi}\alpha - \frac{8}{\pi^3}\alpha^2 + \left(\frac{4}{3\pi^3} - \frac{32}{\pi^5}\right)\alpha^3 + \left(\frac{32}{3\pi^5} - \frac{160}{\pi^7}\right)\alpha^4 + O(\alpha^5).$$

For a nonzero integer k_1 , we have the following expansion by a routine calculation:

$$\begin{split} |E_1^{(k_1)}| &= \theta_2^{(1)} - \theta_1^{(1)} = 2 \tan^{-1} \left(\frac{2k_1 \pi + \theta_2^{(0)}}{\alpha} \right) - 2 \tan^{-1} \left(\frac{2k_1 \pi + \theta_1^{(0)}}{\alpha} \right) \\ &= 2 \tan^{-1} \left(\frac{2\alpha \theta_0(\alpha)}{(2k_1 \pi)^2 - \theta_0^2(\alpha) + \alpha^2} \right) \\ &= 2 \frac{2\alpha \theta_0(\alpha)}{(2k_1 \pi)^2 - \theta_0^2(\alpha) + \alpha^2} - \frac{2}{3} \left(\frac{2\alpha \theta_0(\alpha)}{(2k_1 \pi)^2 - \theta_0^2(\alpha) + \alpha^2} \right)^3 + O(\alpha^5) \\ &= \frac{4\alpha}{\pi} \frac{1}{(2k_1)^2 - 1} - \left\{ \frac{8}{\pi^3 ((2k_1)^2 - 1)} + \frac{16}{\pi^3} \left(\frac{1}{(2k_1)^2 - 1} \right)^2 \right\} \alpha^2 \\ &- \left\{ \left(\frac{16}{3\pi^3} - \frac{64}{\pi^5} \right) \left(\frac{1}{(2k_1)^2 - 1} \right)^3 + \left(\frac{4}{\pi^3} - \frac{16}{\pi^5} \right) \left(\frac{1}{(2k_1)^2 - 1} \right)^2 \right. \\ &+ \frac{16}{\pi^5} \frac{1}{(2k_1)^2 - 1} \right\} \alpha^3 - \left\{ \left(\frac{256}{\pi^7} - \frac{64}{\pi^5} \right) \left(\frac{1}{(2k_1)^2 - 1} \right)^4 - \frac{64}{\pi^5} \left(\frac{1}{(2k_1)^2 - 1} \right)^3 \\ &- \left(\frac{40}{3\pi^5} + \frac{32}{\pi^7} \right) \left(\frac{1}{(2k_1)^2 - 1} \right)^2 - \left(\frac{8}{3\pi^5} - \frac{64}{\pi^7} \right) \frac{1}{(2k_1)^2 - 1} \right\} \alpha^4 + O(\alpha^5). \end{split}$$

Therefore, we get by use of Lemma 2.1

$$\begin{split} |E_1(\alpha)| &= \sum |E_1^{(k_1)}| = \frac{4}{\pi}\alpha - \left(\frac{2}{\pi} - \frac{8}{\pi^3}\right)\alpha^2 \\ &- \left(\frac{16}{3\pi^2} + \frac{32}{\pi^5}\right)\alpha^3 + \left(\frac{1}{6\pi} - \frac{80}{3\pi^5} + \frac{160}{\pi^7}\right)\alpha^4 + O(\alpha^5), \end{split}$$

where the sum runs over all nonzero integers k_1 .

Next, for an integer k_2 , we have

$$\begin{split} &|E_2^{(k_1,k_2)}|\\ &=\theta_2^{(2)}-\theta_1^{(2)}=2\tan^{-1}\left(\frac{2k_2\pi+\theta_2^{(1)}}{\alpha}\right)-2\tan^{-1}\left(\frac{2k_2\pi+\theta_1^{(1)}}{\alpha}\right)\\ &=2\tan^{-1}\left(\frac{\alpha(\theta_2^{(1)}-\theta_1^{(1)})}{(2k_2\pi+\theta_1^{(1)})(2k_2\pi+\theta_2^{(1)})+\alpha^2}\right)\\ &=2\frac{\alpha(\theta_2^{(1)}-\theta_1^{(1)})}{(2k_2\pi+\theta_1^{(1)})(2k_2\pi+\theta_2^{(1)})+\alpha^2}+O(\alpha^5)\\ &=\frac{8\alpha^2}{\pi^3((2k_1)^2-1)(2k_2+1)^2}+\alpha^3\left\{\frac{64k_1}{\pi^5((2k_1)^2-1)^2(2k_2+1)^3}\right\}\\ &-\frac{16}{\pi^5((2k_1)-1)(2k_2+1)^2}-\frac{32}{\pi^5((2k_1)^2-1)^2(2k_2+1)^2}\right\}\\ &+\alpha^4\left\{-\frac{128k_1}{\pi^7((2k_1)^2-1)^2(2k_2+1)^3}-\frac{256k_1}{\pi^7((2k_1)^2-1)^3(2k_2+1)^3}\right.\\ &+\left(\frac{16}{\pi^4}-\frac{4}{3\pi^2}\right)\frac{8}{\pi^3((2k_1)^2-1)^3(2k_2+1)^2}+\frac{512k_1^2}{\pi^3((2k_1)^2-1)^3(2k_2+1)^2}\\ &\left(\frac{4}{\pi^4}-\frac{1}{\pi^2}\right)-\frac{32}{\pi^7}\frac{1}{((2k_1)^2-1)(2k_2+1)^2}+\frac{512k_1^2}{\pi^7((2k_1)^2-1)^3(2k_2+1)^4}\right.\\ &-\frac{8}{\pi^5((2k_1)^2-1)(2k_2+1)^4}-\frac{32}{\pi^7((2k_1)^2-1)^2(2k_2+1)^4}\\ &+\frac{32}{\pi^7((2k_1)^2-1)(2k_1+1)^2(2k_2+1)^3}-\frac{37}{\pi^7((2k_1)^2-1)(2k_1-1)^2(2k_2+1)^3}\right\}\\ &+O(\alpha^5). \end{split}$$

Therefore, we have by use of Lemma 2.1

$$|E_2(\alpha)| = \sum |E_1^{(k_1, k_2)}|$$

$$= \frac{2}{\pi}\alpha^2 - \left(\frac{1}{\pi} - \frac{4}{\pi^3}\right)\alpha^3 - \left(\frac{1}{6\pi} + \frac{2}{\pi^3} - \frac{16}{\pi^5}\right)\alpha^4 + O(\alpha^5),$$

where the sum runs over all nonzero integers k_1 and all integers k_2 .

Next, for integers k_2 and k_3 , we compute

$$\begin{split} |E_3^{(k_1,k_2,k_3)}| &= \theta_2^{(3)} - \theta_1^{(3)} = 2 \tan^{-1} \left(\frac{\alpha(\theta_2^{(2)} - \theta_1^{(2)})}{(2k_2\pi + \theta_1^{(2)})(2k_2\pi + \theta_2^{(2)}) + \alpha^2} \right) \\ &= 2 \frac{\alpha(\theta_2^{(2)} - \theta_1^{(2)})}{(2k_2\pi + \theta_1^{(2)})(2k_2\pi + \theta_2^{(1)}) + \alpha^2} + O(\alpha^5) \\ &= \frac{16}{\pi^5} \frac{1}{(2k_1)^2 - 1} \left(\frac{1}{2k_2 + 1} \right)^2 \left(\frac{1}{2k_3 + 1} \right)^2 \alpha^3 \\ &+ \frac{32}{\pi^7} \left\{ \frac{4k_1}{((2k_1)^2 - 1)^2} \left(\frac{1}{2k_2 + 1} \right)^3 \left(\frac{1}{2k_3 + 1} \right)^2 \right. \\ &- \frac{1}{(2k_1)^2 - 1} \left(\frac{1}{2k_2 + 1} \right)^2 \left(\frac{1}{2k_3 + 1} \right)^2 \\ &- \frac{2}{((2k_1)^2 - 1)^2} \left(\frac{1}{2k_2 + 1} \right)^2 \left(\frac{1}{2k_3 + 1} \right)^3 \\ &+ \frac{2}{(2k_1)^2 - 1} \left(\frac{1}{2k_2 + 1} \right)^3 \left(\frac{1}{2k_3 + 1} \right)^3 \right\} \alpha^4 + O(\alpha^5). \end{split}$$

Therefore, we have by the use of Lemma 2.1

$$|E_3(\alpha)| = \sum |E_3^{(k_1, k_2, k_3)}|$$

= $\frac{1}{\pi} \alpha^3 - \left(\frac{1}{2\pi} - \frac{2}{\pi^3}\right) \alpha^4 + O(\alpha^5),$

where the sum runs over all nonzero integers k_1 and all integers k_2 , k_3 . Finally by Lemma 2.2, we have

$$|E_4(\alpha)| = \frac{1}{2\pi}\alpha^4 + O(\alpha^5).$$

2.4 Proof of Theorem (a). By Lemma 2.3, we have

$$|\bigcup_{n=0}^{4} E_n(\alpha)| = \sum_{n=0}^{4} |E_n(\alpha)| = 2\pi + O(\alpha^5)$$

Since $|E_n(\alpha)| = \frac{8}{\pi} \left(\frac{\alpha}{2}\right)^2 + O(\alpha^{n+1})$ by Lemma 2.2, we have

$$|\bigcup_{n=5}^{\infty} E_n(\alpha)| = \sum_{n=5}^{\infty} |E_n(\alpha)| = O(\alpha^5).$$

Therefore, we have

$$|\bigcup_{n=0}^{\infty} E_n(\alpha)| = \sum_{n=0}^{4} |E_n(\alpha)| + \sum_{n=5}^{\infty} |E_n(\alpha)| = 2\pi + O(\alpha^5),$$

and hence we have our main result,

$$|C(\alpha)| = O(\alpha^5)$$
, as $\alpha \to 0$.

3. Proof by mathematica

We used the MATHEMATICA to obtain the Taylor expansion of $|E_n(\alpha)|$ up to order 6. They are given as follows:

(i)
$$|E_0(\alpha)| = 2\pi - \frac{4}{\pi}\alpha - \frac{8}{\pi^3}\alpha^2 + (\frac{4}{3\pi^3} - \frac{32}{\pi^5})\alpha^3 + (\frac{32}{3\pi^5} - \frac{160}{\pi^7})\alpha^4$$

 $-(\frac{4}{5\pi^5} - \frac{80}{\pi^7} + \frac{896}{\pi^9})\alpha^5 - (\frac{184}{15\pi^7} - \frac{1792}{\pi^9} + \frac{5376}{\pi^{11}})\alpha^6 + O(\alpha^7),$
(ii) $|E_1(\alpha)| = \frac{4}{\pi}\alpha - (\frac{2}{\pi} - \frac{8}{\pi^3})\alpha^2 - (\frac{16}{3\pi^3} - \frac{32}{\pi^5})\alpha^3$
 $+(\frac{1}{6\pi} - \frac{80}{3\pi^5} + \frac{160}{\pi^7})\alpha^4 + (\frac{1}{3\pi^3} + \frac{32}{15\pi^5} - \frac{160}{\pi^7} + \frac{896}{\pi^9})\alpha^5$
 $-(\frac{1}{60\pi} - \frac{1}{6\pi^3} - \frac{4}{3\pi^5} - \frac{424}{15\pi^7} + \frac{3136}{3\pi^9} - \frac{5376}{\pi^{11}})\alpha^6 + O(\alpha^7),$
(iii) $|E_2(\alpha)| = \frac{2}{\pi}\alpha^2 - (\frac{1}{\pi} - \frac{4}{\pi^3})\alpha^3 - (\frac{1}{6\pi} + \frac{2}{\pi^3} - \frac{16}{\pi^5})\alpha^4$
 $+(\frac{1}{12\pi} - \frac{1}{3\pi^3} - \frac{28}{3\pi^5} + \frac{80}{\pi^7})\alpha^5 + (\frac{1}{60\pi} - \frac{2}{3\pi^5} - \frac{56}{\pi^7} + \frac{448}{\pi^9})\alpha^6 + O(\alpha^7),$
(iv) $|E_3(\alpha)| = \frac{1}{\pi}\alpha^3 - (\frac{1}{2\pi} - \frac{2}{\pi^3})\alpha^4 - (\frac{1}{12\pi} + \frac{1}{\pi^3} - \frac{8}{\pi^5})\alpha^5$
 $+(\frac{1}{24\pi} - \frac{1}{6\pi^3} - \frac{14}{3\pi^5} + \frac{4}{\pi^7})\alpha^6 + O(\alpha^7),$
(v) $|E_4(\alpha)| = \frac{1}{2\pi}\alpha^4 - (\frac{1}{4\pi} - \frac{1}{\pi^3})\alpha^5 - (\frac{1}{24\pi} + \frac{1}{2\pi^3} - \frac{4}{\pi^5})\alpha^6 + O(\alpha^7),$
(vi) $|E_5(\alpha)| = \frac{1}{4\pi}\alpha^5 - (\frac{1}{8\pi} - \frac{1}{2\pi^3})\alpha^6 + O(\alpha^7),$
(vii) $|E_6(\alpha)| = \frac{\alpha^6}{8\pi} + O(\alpha^7),$

Since $|E_n(\alpha)| = \frac{8}{\pi} (\frac{\alpha}{2})^n + O(\alpha^{n+1})$ by Lemma 2.2, we have

$$|\bigcup_{n=7}^{\infty} E_n(\alpha)| = \sum_{n=7}^{\infty} |E_n(\alpha)| = O(\alpha^7).$$

Therefore, we have

$$|\bigcup_{n=0}^{\infty} E_n(\alpha)| = \sum_{n=0}^{6} |E_n(\alpha)| + \sum_{n=7}^{\infty} |E_n(\alpha)| = 2\pi + O(\alpha^7).$$

and hence,

$$|C(\alpha)| = O(\alpha^7)$$
, as $\alpha \to 0$.

4. Concluding remarks

The Cantor set $C(\alpha)$ is atypical as compared with the classical Cantor set. When we encountered with the Cantor set $C(\alpha)$, we wondered whether the Lebesgue measure of $C(\alpha)$ is positive for all $0 < \alpha < 2$ or not. We could only prove that $|C(\alpha)| = O(\alpha^5)$ and conjecture that it is of infinite order as $\alpha \to 0$. Also it would be an interesting question to know the Hausdorff dimension of the set $C(\alpha)$.

References

- [D] R. L. Devaney, An introduction to Chaotic Dynamical Systems, Addison-We sley, Menlo Park, 1989.
- [KK1] H. O. Kim and H. S. Kim, Iteration, Denjoy-Wolff point and ergodic properties of point-mass singular inner functions, J. of Math. Anal. and Appl. 174 (1993), 105-117.
- [KK2] H. O. Kim and H. S. Kim, Dynamics of two parameter of point-mass singular inner functions, J. Korean Math. Soc. 33 (1996), 39-46.

Department of Mathematics KAIST Taejon 305-701, Korea