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CONVERGENCE OF WAVELET
EXPANSIONS AT DISCONTINUITY

HoNG-TAE SHIM

1. Introduction

Let ¢ be an orthogonal scaling function, i.e., ¢ : R — R is a square
integrable function having the properties:
1. the functions ¢(z —n),n € Z, form an orthonormal system in L?(R).
2. the multiresolution subspaces V,, of L?(R),mn € Z defined as the
closed linear spans of orthogonal systems épn(r) = 27 ¢(27r —
n),n € Z, are nested;

- C VooV cVocVic V-

3. the union of the spaces V;,,m € Z, is dense in L% R).
Then by the first property the orthogonal projection P, of f € L*(R)
onto Vy, is given by

(1.1) Ppf = (fibmn)bmn,

nez

where (-.-) denote the scalar product in L?(R). Because of the second
and third property, the sequence Py, f converges to f in the L%(R)
norm as m — oo for every f € L*(R). In fact, P, f is a partial sum
of the wavelet expansion associated with the given scaling function.
Let ¢ be a corresponding (mother)wavelet, i.e., a function in V) such
that the system ¢(r — n),n € Z, forms an orthonormal basis of the
orthogonal complement of Vy within V;. Then the system ¢'p,n(z) =
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2%11)(2"’1’. —n),m,n € Z, is an orthormal basis of L?(R); every function
f € L*(R) admits the L%(R) convergent wavelet expansion

(12) f: Z (fvll)mn)wmn-

mnez

Now P, f is the partial sum

Puf =33 (f 0n)tkn.

n k<m

We assume, for some constant K,
(1.3) |o(z)] < K(1+ |2])~? for z€R,3> 1.

Then it is possible to interchange sum and integral in (1.1)(see[1]). So
we can write P, as an integral operator

(Puf)(z) = / T amg(2ma, 27y f(y)dy.

— 00

where the kernel ¢(z,y) is defined by

a(z,y) =Y ¢z —n)é(y —n) for a,ye€R.

nez

For 5> 1, we also have [~ g(z,y)dr = 1 (see also(1],[3, p33]). For

the trigonometric series the following fact is well known:

PROPOSITION [4, P57]. Suppose f is integrable and 2r periodic,
and of bounded variation in an interval I. If f(z%) and f(z~) exist
at x € I, then the Fourier series of f converges to HfEH) + f(z)).
Moreover, if f is continuous on I, then the Fourier series converges
uniformly on any closed subinterval of I.

For wavelet expansions, Walter[2] has shown the following fact:
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PROPOSITION. Let f € L'(R) N L*(R), continuous on (a,b) and let
fm be the projection of f onto V,,, then

fm—f as m— o

uniformly on compact subsets of (a,b).

So it is natural to ask if wavelet expansions have the same property
as the Fourier series has at point of discontinuity.

2. Wavelet expansions at discontinuity

In [2], it is assumed that ¢(z) € Sr,r € N, i.c., [¢F(2)] < Cpr(1 +
|z|)"P,k =0,--- ,r,p € Z,z € R. But we don’t assume any regularity
condition on ¢. In this paper we only assume the decay condition in

(1.3).

LEMMA 1. Let p(x) = [ ¢(z,y)dy and pm(z) = [, a(2™z,y)dy;
then we have

(i) p(z) is 1-periodic function.

(ii) for z = 27%5,5 € Z, pm(z) = p(0) whenever m > k.

Proof. (1) follows by observing ¢(z,y) = ¢(z + k,y + k), k € Z;

pa+D) = [ aletldy= [ gt Lst s
z+1 T

= /:o g(x,s)ds = p(x).

For (i1), we have p,,(z) = p(2™z) = p(2™~*j). If in > k, then p,(x) =
p(some integer). Hence p,,(z) = p(()) by (1). O

THEOREM 1. Suppose f € L'(R) N L>=(R) is piecewise continuous.
Let x be a dyadic rational, i.e., z = 27%; forj, k € Z; then

(Pmf)(@) = fm(z) — af(z®) + (1 = a)f(z7) as m — oo,
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where o = [ (0, y)dy.

Proof. Tt can be proved by observing the orthogonal projection P, f
of f onto V,,;

by taking r = 27F5,
(Pmf)(x) = / g(27 ki, ) F(27 ™ 5)ds
uzm‘k‘}
2m kg
+/ q(jm k ’C() m“)dﬁ

by taking y = s — 2™ %j and m >k,

Pof i) = / Q2™ y 4 2m R (2 9 )y
4]

0
+/ g™y + 27 F(27 My 27 )y

— o

- / 20, 9)F(27™y + 27K )y
JO

0
+/ q(0,y) f(27 ™y + 275 )dy

— 00
In the second equality, we have used Lemma 1. By (1.3), we have
lg(z,y)| < C(1+ |z —y|)™%, 8 > 1 [1]. So by the Lebesgue dominated
convergence theorem, we obtain as m — oo

/ | q(0,y)f(x )dy+/ q(0,y)f(a7)dy = af(zt) + (1 —a)f(s7)

0
0

where « = f“ (0.y)dy =1~ [ q(0,y)dy. O

642
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COROLLARY. Suppose scaling function ¢(z) is even; then

(Puf)(e) —3{f4) + faT)) as m o oc,

for all dyadic rationai .

Proof. By the evenness of ¢, we have

q(0,~y) = > ¢(—n)eé(—y — 1)

nez
=Y s(n)ely +n)
ncz
=¢(0,y),
and - . )
1=/ q(Oﬁy)dy=/0 q(O,y)dy+/ q(0,y)dy

:/ q(O,y)dwa/ q(0. —y).
0 0

Hence 2f0°° ¢(0,y)dy = 1,and we take a as % in Theroem 1. [J

For an example, we show the wavelet expansion of the Haar system
does not converge at non-dyadic rational.

EXAMPLE. Let ¢ be the scaling function for Haar wavelet. We con-
sider a function f defined by

0, =z>2
1
f(z) = 1, §§x<2
0 <1
k) T 3

Then,by using the notations in Lemma 1, we have

eyl 2w 2™
Pafi(z)= [ 220y

2m+1 2m

= 2 dt =
— Bt = p'=—).
ﬂm a(5t)dt = pl=)

3

643



Hong-Tae Shim

Since q(x,y) = ¢(y — [z]), [z] := the greatest integer no bigger than
z, we obtain

5] S (3-[])

and
Piz)=pz)=1- 3=
(3)=pG)=1-2 =1
Pzl =p3)=1- (3 -1)=
g =pG)=1-(G-2)=1
(3) = D) =1- (3 —5)=

which shows (Pp, f)(3) does not converge as m — .

Even though the Shannon scaling function ¢(z) = 5“7‘7;”” does not

satisfy the decay condition in (1.3), it has the same property as the
Fourier series does under an additional condition.

THEOREM 2. Suppose ¢ is the scaling function associated with the
Shannon wavelet. Let f € L'(R) N L%(R) be piecewise continuous and
satisfy the Lipschitz condition to the left and right side of x € R, then

(Puf)a) — ${fE) 4 f7) s m— .
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Proof. From Lemma 1, for all m € Z, we have

oo

am(z) = p(2™x) :/ q(2™z,y)dy

2mzx
% sinw(2™z —y)

- s T gy
/2""1: 7r(2"‘:1: - y)

1 [T si
:_/ Smtdt: 1
T Jo t 2

Moreover,

oo xr

qm(x,y)f(y)der/ gm(x,y)f(y)dy

— o0

(Puf)@) = [

z

oc 2™z
:/; q(me,s)f(Z_ms)d5+/ q(2™z,s)f(27"s)ds

m —-—00

:/ g(2Mz,2Mx + 1) f(27"t + x)dt
0

0
+/ q(2™z,2™z + ) f(27 7 + z)dt

-0

[« <IN ‘ 0 : t
:/ Sln”tf(z—mt+x)dt+/ ST r0mme 4 2)dt.
0

t oo T

Now we consider the following calculation;

(P @) =5 () + f(2))
= [ R ) - s

0 : mo
+/ M2 Ft 4 2) — fle))dt,

oo T
We show that the first integral converges to 0 as m — oc. Then the
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second integral has the same result by the same manner.
* sin 2™t
[ g s
0 nt

1 ) — fr
:;/ sin2’"7rf{f(t+r) g +)}dt
Jo

7t

O f p
+/ Sin2mwtﬂﬂdf
1

g3

oG ‘)Trl
_f(J‘Jr)/ s 2 Wtdt
Ji

wt

=Iy + I, + I5.

To finish the proof, we need to show I; — 0 as m -» oo for i = 1,2, 3.
Indeed we have the following estimate: by the Lipschitz condition for
f. we get

flt+a)— flat)

~| < M, f{for a constant M.
it

)= f(zt \ . .
This tells L{FzI=flz7) € L'(0,1) and by using the Riemann Lebesgue
it ’ Y g g
lemma. we obtain I; — 0 as m — oc. For I, since ﬁ-’-j—r) € L'(1,20)
we again obtain I; — 0 as m — oo by the Riemann -Lebesgue lemma.
For I, direct calculation shows

cos2Mpt 11 * cos 2™t 1
I = | -2 720 o
1 1

Imy amn 12

which converges to 0 as m — oc. [
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