An existence of solutions for an infinte diffusion constant

  • Ham, Yoon-Mee (Departmet of Mathematics, Kyonggi University, Suwon 442-760)
  • 발행 : 1996.11.01

초록

The parabolic free boundary problem with Puschino dynamics is given by (see in [3]) $$ (1) { \upsilon_t = D\upsilon_{xx} - (c_1 + b)\upsilon + c_1 H(x - s(t)) for (x,t) \in \Omega^- \cup \Omega^+, { \upsilon_x(0,t) = 0 = \upsilon_x(1,t) for t > 0, { \upsilon(x,0) = \upsilon_0(x) for 0 \leq x \leq 1, { \tau\frac{dt}{ds} = C)\upsilon(s(t),t)) for t > 0, { s(0) = s_0, 0 < s_0 < 1, $$ where $\upsilon(x,t)$ and $\upsilon_x(x,t)$ are assumed continuous in $\Omega = (0,1) \times (0, \infty)$.

키워드