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ON VECTOR VARIATIONAL INEQUALITY

Guk MYUNG LEg!, Do SANG KiM?,
BYUNG Soo LEE® AND SunG Jiv Cuo?

1. Introduction

Since Giannessi [5] introduced the vector variational inequality in
a finite dimensional Euclidean space with further application, Chang
et al. [17], Chen et al. [1-4] and Lee et al. [10-16] have considered
several kinds of vector variational inequalities in abstract spaces and
have obtained existence theorems for their inequalities.

Let X, Y be Banach spaces with dual spaces X * and Y * respectively.
Let K be a nonempty, closed and convex subset of X, T : k' — L(X,Y")
an operator, where L(X,Y") 1s the space of all lir:ear continuous opera-
tors from X into Y, and H : K — Y an operator. Let P be a convex
and pointed cone in Y with intP # §, where int denotes the interior of
a set, and

P*={seY*:(s,r) 20foralla € P}.
Consider the following three kinds of vector variational inequalities:

(SVVI) the strong vector variational inequality: Find 2o € K such

that (T(zg),2 — zo) + H(z) — H(zg) € Pforall x € K,

(VVI) the vector variational inequality: Find xy € K such that

(T(xo),z —x0) + H(z) — H(zo) ¢ —P\{0} for aill x € i, and

(WVVI) the weak vector variational inequality: Find ry € A such
that (T(zg),z — z¢) + H(z) — H(zy) ¢ —intP forall x € K.
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where (T(x),y) denotes the evaluation of the linear operator T(x) at y.

When H = 0, (WVVI) becomes the vector variational inequality
considered in [1-3,19].

In relation to the three inequalities, we consider the following varia-
tional inequality (VVI), for a given s € P*:

(VVI), Find z¢ € K such that (s o T(z9),z —2y) +so H(x)—so
H(zg)20forall z € K,

where s o T(xz) is the composition of s and T'(z).

In this paper, we give the relationships among (SVVI), (VVI), (WVVI)
and (VVI),, and obtain the existence theorems for (VVI) and (WVVI)
by the scalarization method. Also, we give equivalent relations among
the special cases of (VVI) and multiobjective optimization problems.

This paper is composed of four sections. In section 2, we establish
relationships among (SVVI), (VVI), (WVVI) and (VVI),. In section
3, we obtain the existence theorems for (VVI) and (WVVI) by the
scalarization method and also extend our results to unbounded sets.
In section 4, we consider the special cases of (VVI) formulated in sec-
tion 1, and give equivalent relations among them and multiobjective
optimization problems.

2. Relationships

In this section we give the relationships among (SVVI), (VVI), (WVVI)
and (VVI),.

LEMMA 2.1 [6]. Let E be a topological vector space with dual space
E* and P a convex cone in E with intP # ). Then we have

int P={c € E:(z*z)>0forall z* € P*\{0}}.

Also if E is a reflexive locally convex Hausdorff space with dual space
E* and P is a closed and convex cone in E with intP* # ), then

int P* = {z* € E*: (x*,2) > 0 for all € P\{0}}.
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DEFINITION 2.1. Let X, Y be topological vector spaces, ' a none-
mpty, convex subset of X and P a convex cone in Y. Then an operator
F: K —Y is said to be P-convex if for all @ € (0,1) and x,,2, € K.

aF(x,)+ (1 - a)F(zy)— Flar, + (1 - a)zz) € P.

DEFINITION 2.2 [7]. Let Y be a topological veztor space, P a convex
cone in Y with intP # @ and K a nonempty sct. Then an operator
F: L — Y is said to be P-subconvexlike if there is a § € intP such
that for all @ € (0,1), x,79 € K and € > 0, there is an x3 € A such
that

e+ aF(z)+(1—a)F(xz)— Fl(ay) € P.

REMARK. If F: ' — Y is P-convex, then F is P-subconvexlike.

ProprosiTION 2.1. Let X, Y be Banach spaces, K a nonempty,
closed and convex subset of X, T : K — L(X,Y) an operator and
H : K — Y an operator. Let P be a closed, couvex and pointed cone
in Y with intP # () and intP* # ().

Let

A= {zo€ K : (T(x9),x — x9) + H(z) — H(zg) = P forall re L'},
B = U {ro € K: (s0T(x0), —x0) +s0H(z)—s0H(xg) 20,

s€int P*

for all r € K}

C={xo€ K:(T(zy),x —z9)+ H(z) — H(zo) # —P\{0}
for all = € K},

D ={zg€ K :{(T(zxy),x —xo) + H(z) — H(xp) £ —int P
for all z € K}

and

E= U {ro€ K :(soT(zg),z —xo)+soH(z)—soH(zg) 20

s€ P\ {0}

for all x € K}.
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Then the following hold.

() AcCcDand ACB.

(2) If Y is reflexive, then B C C.

(3) ECD.

(4) Furthermore, if for each z € K, (T(z), )+ H(-) is P-subconvexlike,
then D C E.

Proof. (1) Since P is pointed, A C C C D holds. A C B is trivial.
(2) Let 9 € B. Then there exists s € int P* such that

(%) (soT(xp),z —xo)+s0oH(z)—soH(xg) 2 0forall z € I\
Suppose that there exists a z € K such that
(T(x0), 2 — a9) + H(z) — H(zo) € —P1{0}.
Since s € intP*, by Lemma 2.1,
(soT(zo)yz—a9)+soH(z)—soH(zx)) <0,

which contradicts (x). Hence z¢ € C.

(3) By using Lemma 2.1, (3) can be proved similarly to the case of
(2).

(4) Let zo € D.

(T(xg), o) + H(zg) ¢ (T(xg),z) + H(z) +intP for all z € K.

Let G(z) = (T(xo),z) + H(z). Then G(zy) ¢ G(R) + intP. Since G
is P-subconvexlike, G(K') + intP is convex (see Lemima 3.2 in [8]). By
the separation theorem, there exists s € Y*\{0} such that (s, G(xy)) £
(s,G(x)) + (s,c) for all z € K and ¢ € intP. Since the closure of intP
1s P, we have

(s,G(zg)) £ (5,G(z)) + {s,c) for all z € K and c € P.
We can easily check that s € P*\{0}. Thus we have

0 < (5, G(x)) — {s.Glz0))
=(soT(xg),z —z9) +so0 H(z)—so H(xp) for all z € KA.
Hence zy € F.
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REMARK. If H : K — Y is P-convex, then for cach z € K, (T(z),-)+
H(.) is P-subconvexlike.

3. Existence Theorems

First we give definitions and lemmas for existence theorems of solu-
tions for vector variational inequalities (VVI) and (WVVI).

DEFINITION 3.1 [9]. Let X, Y be normed spaces, K a nonecmpty
convex subset of X, P a convex cone in Y and F': K — Y an operator.
Then F is said to be P-continuous at o € K if, for any neighborhood
U of F(zy) in Y, there exists a neighborhood V' of #y in X such that

F(z)eU+4 Pforallz € VN L.
We say that F is P-continuous on I if it is P-continuous at any point
of .

REMARK. If Y =R and P = R;, then the P-continuity is the same
as the lower semicontinuity.

LEMMA 3.1 [9]. Let X, Y be normed spaces, K a nonempty convex
subset of X and P a convex cone in Y. If an operator FF : K — Y
is P-convex and P-continuous, then for any s € P*, s o F 1s lower
semicontinuous and convex.

DEFINITION 3.2. Let X be a Banach space with its dual X, A a
nonempty convex subset of X and T : K —» X* an operator.

1. T is said to be monotone if for any =,y € I{,
(T(z) = T(y),z —y) 2 0.

2. T is called hemicontinuous if for any z,y,z € K and t € (0,1),
the mapping t — (T(z + t(y — x)), z) is continucus at 0.
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DEFINITION 3.3. Let X, Y be Banach spaces, K a nonempty convex
subset of X, P a convex cone in ¥ and T : K’ — L{X,Y) an operator

1. T is said be P-monotone if for any z,y € K,
(T(x) - T(y),x —y) € .

2. T is called V-hemicontinuous if for any z,y,z € I{, t € (0, 1), the
mapping t — (T(z + t(y — z)), 2) is continuous at (.

REMARK. Our definition of V-hemicontinuity is shghtly different
from that in [3].

Modifying the proof of Theorem 3 in [20], we can obtain the following
lemma.

PROPOSITION 3.2. Let X be a reflexive Banach space with its dual
X* and K a nonempty, closed, bounded and convex subset of X. If F':
K — X* is a monotone and hemicontinuous operator and h : ' — R

is a lower semicontinuous and convex function, then there is an xg € I¥
such that

(F(xg),x —x¢) + h(z) — h(x0) 2 0 for all z € K.

Now we prove the existence theorems for (VVI) and (WVVI) by the
scalarization method.

THEOREM 3.1. Let X, Y be reflexive Banach spaces. Let I\ be a
nonempty, closed, bounded and convex subset of X and P a closed,
pointed and convex cone in 'Y with intP # ( and intP* # 0. If T :
K — L(X,Y) is a P-monotone and V-hemicontinuous operator and
H: K —Y is a P-continuous and P-convex operator, then there is an
ry € K such that x¢ is a solution of (VVI).

Proof. Let s € intP*. Define (s o T)(z) = soT{x) for any r € K.
Then soT : K — X*, where X* is the dual space of X. Since T 1s
P-monotone, for any z,y € K,

(T(«) - T(y),z ~ y) € P,
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Thus we have, for any z,y € K,
((soT)(x)—(soT)(y)z—y)=s{{T(z) -~ T(y)z—y)]20.

Hence soT is monotone. Since T is V-hemicontinuous, for any x,y,z €

I oand t € (0.1),

lim (T(z 4ty — x)),z) = (T(z), z).

t—o+

Thus we have, for any z,y,z € K and t € (0,1),

lim (s 0 T)(z + t(y — ©)).2) = ((s 0 T)(x). ).

t—0+

Hence s o T is hemicontinuous. Since H is P-continuous and P-convex,
by Lemma 3.1, s o H is a lower semicontinuous and convex function.
By Lemma 3.2, there exists an xo € K such that xg is a solution of
(VVI),. By Proposition 2.1, x4 is a solution of (VVI).

By choosing s € P*\{0} and using the method similar to the proof of
Theorem 3.1, we can prove the following theorem without the reflexivity
of Y and intP* # § in Theorem 3.1.

THEOREM 3.2, Let X be a reflexive Banach space, Y a Banach
space, K a nonempty, closed, bounded and convex subset of X and
P a closed, pointed and convex cone in Y with intP # . If T :
K — L(X,Y) is a P-monotone and V-hemicontinuous operator and
H: K — Y is a P-continuous and P-convex operator, then there is an
xp € I such that z is a solution of (WVVI).

REMARK. The above Theorem 3.2 is a slight generalization of part
(1) of Theorem 2.1 in [3]. But the definition of V-hemicontinuity in
Theorem 3.2 is slightly different from that in part (i) of Theorem 2.1
in {3].

Now we extend Theorem 3.1 and 3.2 to unbounded sets.

THEOREM 3.3. Let X, Y bereflexive Banach spaces, I a nonempty,
closed and convex subset of X and P a closed, pointed and convex cone

559



Gue Myung Lee, Do Sang Kim, Byung Soo Lee and Sung Jin Cho

inY with intP # 0 and intP* # §. Let T : K — L(X,Y) be P-
monotone and V -hemicontinuous and H : K — Y be P-continuous and
P-convex. If there exists a nonempty bounded subsct U of K such that
for each ¢ € K\U, there is a u € U such that

(T(z),u — )+ H(u) — H(x) € —P\{0},
then there exists o € K such that xzy is a solution of (VVI).

Proof. Since U is bounded, there exists r > 0 such that forall r € U,
llz|| < r. Let K, = {z € K : ||z]| £ r}. Then K is a nonempty, closed,
bounded and convex subset of X. By Theorem 3.1, there exists an
z, € K, such that

(T(z,).2 — 2,) + H(z) — H(z,) ¢ —P\{0} ferall z € K,. (%)
If z, ¢ U, by the assumption, there is a u € U such that
(T(z.),u —z,)+ H(u) — H(z,) € —F\{0},

which contradicts (*). Hence z, € U. Let z be any fixed point of
K. Since K is convex and ||z.| < r, there exists ¢ € (0,1) such that
w=axr+ (1 —a)z, € K,. By (x), we have

(T(x,),w —x,) + H(w)— H(x,) ¢ —P\{0}.
Since H is P-convex, H(w) — aH(z) — (1 — «)H(a,) € —P. Thus we

have
(T(z,),w — o) + aH(z) + (1 - a)H(z,) — H(z,) ¢ ~P\{0}.
Hence we have
(T(z,),a(z — 2,)) + aH(z) — aH(z,) ¢ ~P\{0}.
Dividing by «, we have
(T(z,),x — 2.} + H(z) - H(z,) ¢ ~P\{0}.

Hence z, is a solution of (VVI).

By the method similar to the proof of Theorem 3.3, we can obtain
the following theorem from Theorem 3.2.
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THEOREM 3.4. Let X be a reflexive Banach space and Y a Banach
space. Let K be a nonempty, closed and convex subset of X and P a
closed, pointed and convex cone in Y withint P # 0. Let T : K —
L(X.,Y) be P-monotone and V-hemicontinuous and H : K — Y bhe P
continuous and P-convex. If there exists a nonemnpty bounded subset
U of K such that for cach * € K'\U, there is a u € U such that

(T(x),u—2)+ H(u) — H{x) € —intD,

then there exists an ry € K such that x4 is a solution of (WVVI),

4. Multiobjective Optimization Problems

In this section, we consider the special cases of the vector variational
inequality (VVI) formulated in section 1, and give relationships among
those inequalities and multiobjective optimization: problems.

First we give the concept of solution of multiobjective optimization
problems.

Let f = (fi,---,fp) be an operator from R"” to R” and K be a
nonempty subset of R”.
Consider the following multiobjective optimization problem (P);

(P) Minimize (fi(x), -, fp(z)) subject to z € K.

Optimization in (P) means obtaining efficient sclutions of (P) defined
as follows;

DEFINITION 4.1. x4 € K 1s said to be an efficient solution of {P) if
flz) — flzg) ¢ —REN{O}Hor any = € K.

where RE = {(z1,-- ,2p) €RP 1 2; > 0,0 =1,--- p}.

Now we give some special cases of (VVI) formulated in section 1;
(1) Let K be a closed convex subset of R and T : R" — RFP*" an
operator, where T(x) = (Ty(z), - ,T(r))" and T;(z) € R™.
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Consider the following vector variational inequality (VVI)’ intro-
duced by Giannessi [5];

(VVI) Find zy € K such that
(Tv(z0)(z — x0), s Tp(z0) (z — x0)) ¢ —RE\{O}Hor all z € K.
(2) Let f = (f1,---, fp) be a differentiable operator from R" to R?

and A a polyhedral convex set in R", that is, the ‘ntersection of some
finite collection of closed halfspaces in R", such that intK # (.
Consider the following vector variational inequality (VVI)";

(VVI)” Find zy € K such that
(VA(xo)(x —z0)y- , Viplae)(z — ;ro)) ¢ —REA{0} for all r € K.
By Definition 4.1, we can obtain easily the following proposition;

PROPOSITION 4.1. zy € K is a solution of (VVI)' if and only if
g € K is an efficient solution of a multiobjective linear optimization
problem: Minimize (Ty(zo)'z, - ,Tp(zo)'z) subject to x € It

THEOREM 4.1. The followings are equivalent;

(1) zo € I is a solution of (VVI)".

(2) zo € K is an efficient solution of a multiobjective linear opti-
mization problem: Minimize (V fi(x¢)'z, - -,V fy(xo)'z) sub-
ject tox € K.

(3) There exists A; > 0,i = 1,--- ,psuch that 2y € I is an optimal
solution of the ordinary linear optimization problem: minimize
MV fi(xo)ta+ -+ NV fp(zo)tz subject to r € .

(4) There exists A; > 0,2 = 1,--- ,p such that g(x) := MV fi(xp)'z
-+ A,V fplzo) e + ¢ x(a) has a global minimum at xq € K,

where
o) { 0 ifrekK
M5\ ifrg¢ K.
(5) There exists A\; > 0,2 =1,--- ,p such that
0€ MiVfilzo)+ -+ XV fplxo) + ok (z0),

where 0¢ i (xo) is the subdifferential of ¢ at z¢ € K.
(6) zo € K and there exists \; > 0,i = 1,--- ,p such that —>F_,
AV fxg) € (K —xy)”, where (K —z¢)” = {z ¢ R*:
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Proof. By Proposition 4.1, (1) is equivalent to (2). By Theorem

3.4.7 in [18], (2) is equivalent to (3). It is easily checked that (3) is
equivalent to (4). Also, it is easily checked that (4) is equivalent to (3).
Since 0¢ k(o) = (K — zq)7, (5) is equivalent to {6).
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