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THE GENERATOR OF THE ANALYTIC GROUP
WITH ITS LIE ALGEBRA g = rad(g) @ sl(2,F)

MI-AENG WI

1. Introduction

Let F denote R or C. Put A = SL(2,F). Defire P(F?) to be the set

of all 1-dimensional subspaces of F?. Then the natural action of A on
F? induces an action on P(F?).

REMARK. The action on P(F?) is doubly transitive with the kernel
{£I}. In particular, PSL(2,F) acts faithfully on P(F?)

NOTATION. G = (A, B) means that G is generated by A and B.
Z(G) is a center of G.
[, ] is a commutator.

Let v = ((0,1)) and B be a stabilizer of v in A.

b . 1 b
ThusB:{(g a“l) | 0 # a, bEH“}.PutD :{<0 1>|66F}.

Let exp : sl(2,F) — A be the exponential map. Let 55 be the subalge-
bra of sl(2,F) given by { (3 8) | be ]F'}. Then we have the following
Lemmas:
LEMMA 1.1. [B,B] =U = exp(sy).
Proof. Since B/U = F — {0} is abelian, [B,B] < U.
0 1t

a ,
0 a1 )8 g 1)€0

a 0 (1 —a™?
[(() a_]>"<(1) i)}z(é t 1 )>.Thus, U < [B, B]. Also,
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Conversely, for

simple, levi decomposition, covering group.
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U = exp(so) since the exponential map from sl(2,F) to A is given by
ordinary exponential matrices. Put

B"”’:{(Z agl) Io#a,bew}and U"””:{(i ?)Icem‘}.

LEMMA 1.2. A is generated by U and U°PP.

Proof. We will use Gaussian Elimination.

Let ((cl Z) be in SL(2,F). Put K = (U,U°P) and put A(t) =

1t ' 10 0 1 o
(0 1>,u(t)—<t 1),7-—(_1 0) for t € F. Left multipli-

cation by u(t) induces the elementary row operation of adding ¢ times

first row to the second row. Left multiplication by A(t) induces the

elementary row operation of adding ¢ times second row to the first

row. Also, left multiplication by 7 interchanges rows and negates the

second row. We first note that 7 € K, since 7 = A1)u(—1)A(1).
0

i . ) a 0 s g a =
Next, the diagonal matrix (0 a’l) i1s in K since (O a1 ) =

w(DHA(@)p(—a=1)A(a? + a)(r3). Next, any matrix (_O Z) is in

p-1
. 0 b _ _ -b 0
K, since (—b_l d) =7 A(—db 1)( 0 —b_l)'

. . a b\ _ 1 a”l 0

Finally, if @ # 0, we have (c d) = p(—ca”' ;7 A(ab) ( 0 a)
isin K.

COROLLARY 1.3. Any two conjugates of U generate A = SL(2,F).

Proof. Let z,y € A with U® # U¥. By Lemma 1.1, U* = [B*, B¥]
and UY = [BY, BY]. So, B* # B¥. By doubly transirivity of A on P(F?),
there is h € A such that B*™* = B, B¥* = B°PP, Then (U*,UY) =
(U=h Uvtyh™ = (U, UorP)*" = A*" = A by Lemma 1.2.

PROPOSITION 1.4. Let G* be an analytic group with L(G*) = sl(2,
F). Put so = the subalgebra of sl(2,F) given by {(8 8) | b€ IF’}.
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Then G* is generated by any two conjugates of exp* (s,), where exp* :
sl(2,F) — G* is the exponential map.

Proof. Put U* = exp*(s,). Let X* Y* be two distinct conjugates of
U* in G*.

Put H* = (X*,Y*). We will show that H* = G*. We have G*
semisimple. Hence Z(G*) is discrete, and any proper normal subgroup
of G is contained in Z(G*) since PSL(2,F) is simmple for any field F of
order bigger then 3. Then G*/Z(G*) is a simple analytic group with
Lie algebra sl(2,F). Thus G*/Z(G*) = PSL(2.F), and the quotient
map ¢ : G* — G*/Z(G*) is a covering of PSL(2,F). Then we have a
commutative diagram; for any g € G*,

G ——a—di—J, G+
exp *
sl(2, F) wl vl
exp

ade(y)

PSL(2,F) — PSL(2,F)

Here X* = (exp*(5,))? for ¢ € G*.

Then we have ¢(X*) = (exp(s,))*'¥) by the above commutative
diagram. Similarly, p(Y*) = (exp(s,))?® for same h € G*. Suppose
(X *) # o(Y™*). Let ¥ be the quotient map SL(2,F) - PSL(2,F).

Since i is an epimorphism, we have ¢(g) = ¥(¢') for some ¢' €
SL(2,F). Then we have a commutative diagram:

adg/
SL(2,F) — ' SL(2.F)

exp,
sl(2,F) wl wl

exp

ad, (g
PSL(2,F) — PSL(2,F)
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This diagram show that o(X*) = y(exp,(5,)? ). Put X = exp,(8,)7 .

= w(n) Then ¢(X*) =
$(X) and o(Y*) = ¢(Y). Thus (X) # ¢(¥) and so X # ¥. But
(X,Y) = SL(2.F) by Corollary 1.3. So, (¢(X*),¢(Y*)) = (X, ¥) =
PSL(2,F). Now, then o(H*) = PSL(2,F). But Ker ¢ = Z(G*) and so
G* = H*Z(G*). Since G* is semisimple, G* = [G*,G*] = H*. So, we
are done in this case.

It remains to show that ¢(X ™) # ¢(Y*). Suppose p(X*) = »(Y*).
Then Z(G*)X* = Z(G*)Y*. But X* = (Z(G*)X*)°, a connected
component of 1 in Z(G*)X™*, since X* is connected and so X* <
Z(G*)X*)°. Also Z(G*)X*/X* = Z(G*)/(Z(G*) N X*) discrete.
Hence X* = (Z(G*)X*)°. Similarly, Y* = (Z(G*)Y*)°. Hence X* =

Y * a contradiction.

Similarly, put Y = = exp;(s,) M where o(h)

*

2. Main Hypothesis

PART I : Assume that G is an analytic group over F(= R or C).
Let g be the Lie algebra of G. Assume that g = rad(g) & m, where
m=sl(2,F).

Before stating Part II of the hypothesis, we first establish noation,
as follows.

Let s, be the subalgebra of sl(2, F) given by {(8 0) | a € ]F}
q = nil rad(g)
s=qds,
So = exp(s,)
S = exp(s)
@ = exp(q)
M = exp(m)

PART II: Let X denote the group of all continuous automorphisms
of §. Assume that no non-identity X-invariant subgroup of S is normal

m G.
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LEMMA 2.1. [Theorem 3.18.13 in [3]] Let G be an analytic group
with Lie algebra g, and Q(resp. N) the radical (resp. nil radical) of
G. Then Q and N are closed. Suppose that g = q+ m is a Levi
decomposition of g and that M is the analytic subgroup of G defined by
m. Then G = QM, and M is a maximal semisimple analytic subgroup

of G.

REMARK. Notice that g = rad(g) @ m is a Levi decomposition of
g. Then, by Lemma 2.1, we have G = RM, wherc M is a maximal
semisimple connected subgroup of G and R is the radical of G. Also, Q
is a connected normal Lie subgroup of G and S is connected nilpotent.

Now, we want to describe what are the relations among S, ¢, M and
G under the main hypothesis:

LEMMA 2.2. [Proposition 2.2 in [5]] G = QM and g = q & m.
LEMMA 2.3. [Lemma 4.3 1in [5]] S = @S, and S,NQ = 1.

Let D denote the inverse image of Z(G/Q) in G, where Z(G/Q) is
a center of G/Q

LEMMA 2.4. SN D=Q

Proof. We have S = QS, and S,N @ = 1 by Lemma 2.3. Thus
SND=QS,ND=Q(S,ND)=Q

LEMMA 2.5. [Lemma 3.2 in[5]] M is a covering group of PSL(2,F).

3. Main Theorem

THEOREM 3.1. G = (§5,5%) for any r € G — Ng(S), where Ng(S)
1s a normaliter of S in G.

Proof. Let = € G — Ng(S). Then S # S* Put G = G/Q. Then
S # 5%, since Q < SNS?. Here G = M/(MNQ). Put M = M/(MNQ).
We need to show that the canonical map M — M/Z(M) is a cov-
ering of PSL(2,F), where Z(M) is a center of M. By Lemma 2.5,
M is a covering group of PSL(2,F) and M/K = PSL(2,F), where
K discrete kernel of the covering map M — PSL(2,F). Since M
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is semisimple, M = [M,M] and so Z(M) = K. Now, M/Z(M) =
M/(MNQ)/Z(M)/Z(MNQ)X M/Z(M) = M/K = PSL(2,F). Since
M is semisimple, Z(M) = K/Q is discrete. Hence. the canonical map
is a covering of PSL(2,F).

Now, let ;M — PSL(2,F) and let M, be a subgroup of M gener-
ated by two conjugate of S,. Since S,Nkerm =1, S, kerm = S, xker .
Also, S, is connected, and so S, kerw/S, = kern discrete. So, S, is
connected component of 1 in S,kernr. Thus S, is the unique con-
jugate of S, contained in S,kerm. Thus the restriction of = to M,
is surjective by Corollary 1.3. Hence M = MyZ(M). Since M =
[]\/Y.M] = [M(]Z(M),AZOZ(AZ)] = []\/IO,MU] S MQ,M = JW(). Thus
M = (S,5%) for x € G — Ng(S). Since G = QM by Lemma 2.2,
G =Q(50,57) = (QSo,QSE) = (S,8%) for z € G - Mg(S).

COROLLARY 3.5. Q@ = SN S* forany z € G — Ng(S).

Proof. We have that Q < SN S*. Put G = G/Q. Then SN S is
normal in G = (S, 5%). Thus SN S” is normal in G. However, Q is
the largest subgroup in S which is normal in G by Lemma 2.4. Thus
SNS*<@Qandso SNS*=Q.
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