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SPECTRA AND NUMERICAL RANGES

YOUNGOH YANG

1. Introduction

The theory of numerical ranges in unital normed algebras has exten-
sively studied by many authors, for example, see [1], [2] for details.

Let z be a fixed element of a non unital normed algebra A over a field
K =R or C. In [8], Yang introduced the notion of right(left) relative
numerical range V,2(4,a)(V,F(A4,a)) of an element a of a non unital
normed algebra A relative to x € A(see Definition 2.1). If 2 = e, the
identity of 4 and |e|| = 1, then VR(A, a) coincides with V(a) where
V(a) denotes the (Bonsall and Duncan) numerical range of a ([2]). Since
z can be arbitrarily chosen, this concept extends the familiar concept of
numerical range. Among the results, it is shown ([8]) that our numerical
range is a compact convex subset of K.

In this paper, we introduce the notion of w-proximinal subspace of a
normed linear space and show that every proper closed left or right ideal
of a unital Banach algebra is w-proximinal. Also we give an example
which is not a w-proximinal subspace.

It is shown ([1]) that if A is a unital Banach algebra, then Spa(a) C
V(a). Further, we introduce the notions of proximinal properties of a
normed algebra, and for a normed algebra A having proximinal prop-
erty, we give the similar inclusion relation between the spectrum Sp4(«)
and the relative numerical range of @ € A. In particular we show that
if A is a normed algebra having the first proximinal property or second
proximinal property and a € A, then {0}°NSpa(a) C V,(A, a) for some
r € A with |z = 1.
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2. Spectra and relative numerical ranges

In this section, we introduce the concept of proximinal property of a
normed algebra and study the inclusion relation between the spectrum
and the relative numerical range.

DerFINITION 2.1. ([8]) Let A be a normed algebra over the field
K =R or C, and A’ its dual. For z € A, we write

D(Az)={f €A :|fll=1, f(z) = ||«||}.

The right relative numerical range of a € A relutive to x is defined
to be VR(A,a) = {f(azx) : f € D(A,z)}. The lef: relative numerical
range of a € A relative to z is defined to be Vi4,a) = {f(za): f €
D(A,z)}. The relative numerical range of a relative to z is defined to
be V.(A,a) = VE(A,a)UV,L(A,a). The right relative numerical radius
of a relative to r is defined by v2(a) = sup{]A| : A € V.(4,a)}. The
left relative numerical radius of a relative to z is defined by v¥(a) =
sup{|A| : A € V.I(A,a)}. The relative numerical radius of a relative to
z is defined by v (a) = max{v®(a),vt(a)}.

Note that the set D(A, ) is a nonempty subset of A" by the Hahn-
Banach Theorem, and so V.2(A, a) and V.*(4,a) are nonempty. If 4 is
commutative, then VR(A,a) = V(A a) = V(A a) as f(az) = f(za).
If z = e(identity of A) with |le]| = 1, then V.(A,a) = V(a), where V(a)
denotes the (Bonsall and Duncan) numerical range of a ([2]). Thus the
concept of relative numerical range extends that of the (Bonsall and
Duncan) numerical range.

LEMMA 2.2. ([8]) Let a, z be elements of a normed algebra A. Then

(1) D(A,r) is a weak™® compact convex subset of A

(2) VE(A, a)and VF(A,a) are compact convex subsets of i, hence
Vi(A,a) is a compact subset of K.

(3) If B is a subalgebra of a normed algebra 4 and b,x € B, then
Vo(B,b) = V,(A,b).

We introduce the concept of a w-proximinal subspace in the follow-
ing:
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DEFINITION 2.3. Let X be a normed linear space and M a proper
subspace of X. M is called w-proximinal if there exists an element

z € X such that 1 = ||z|| = d(z. M).

It is casy to show that every proximal subspace of a normed space
is w-proximinal. But it is unknown whether the converse holds or not.

EXAMPLE 2.4. (1) Let X = R? and let M be the z—axis. Then M
is clearly a proper subspace of a normed linear space X, and 1 = |[z|| =
d(xz, M) for some z = (0,1) € X.

(2) Let X = [*° be the set of all bounded sequences and let M = ¢
be the set of all sequences that converge to 0. Then M is a closed
subspace of X and hence is a Banach space(not reflexive}. Also 1 =
|lz|| = d(z,cq) for some x = {1 — +} in X. Hencc ¢q is a w-proximinal
subspace of [*°.

LEMMA 2.5. ([4]) Suppose X is a normed linear space over R or C.
Let M be a finite dimensional proper subspace of X. Then there exists
an x € X such that 1 = ||z|| = d(z, M) where d{z, M) is the distance
from z to M.

From the above lemma, every finite dimensional proper subspace of
a normed linear space is w-proximinal.

EXAMPLE 2.6. Let L: C[0,1] — K be defined by

1/2 1
L(f)= /0 flx)dr — flzide.

1/2

Then ||L|| = 1 and d(f.ker L) = |L(f)| by ([7], problem 3, p138). Thus
there does not exist ¢ € C[0,1] such that 1 = ||g|| = |L(g)|. i.e., ker L
18 not w-proximinal.

Let A be a normed algebra but do not assume that A has an identity.
We say that a left ideal I is modular if there exists ¢ € A such that
A(l—e)={a—ae: a € A} C I. e is called a right modular unit for I.
Similarly, a right ideal I is modular if there exists a left modular unit
for I. A two-sided ideal I is modular if it is modular both as a left and
as a right ideal([3]).
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DEFINITION 2.7. Let A be a normed algebra. A is said to have the
first proximinal property if every one-sided maximal modular ideal of
A i1s w-proximinal. A is said to have the second proximinal property if
every maximal modular ideal of a maximal commutative subalgebra of
A is w-proximinal. }

By definition, a w-proximinal subspace of a normed linear space has
proper closure. So every w-proximinal maximal modular left ideal is
closed.

LEMMA 2.8. ([5]) Let M be a subspace of a normed linear space X.
Given r € X with d = d(z, M) > 0, there exists an f € X' such that

Ifll =1, f(M)={0} and f(z) = diz, M).

Let r(A) denotes the set of regular elements in a normed algebra A
and N(a,r) the open ball at a € A of radius r. For an element a of A,
let Spa(a), Sp4(a) (SpE(a)) denote the spectrum, left( right) spectrum
of a with respect to A respectively.

THEOREM 2.9. Let A be a unital Banach algebra. Then every
proper closed left or right ideal M of A is w-proximinal. In partic-
ular, any unital Banach algebra has the first and second proximinal
properties.

Proof. Let M be any proper closed left or right ideal of A. If z €
N(e, 1), then |je — z|] < 1 and so z is regular in 4 by ([3]. Lemma
2.1). Hence e € N(e,1) C r(A) C M° and e ¢ M. Put r = d(e, M).
By Lemma 2.8, there exists ¢ € A’ such that g(e) = r, |lg]] = 1 and
g(M) = {0}. Since € is an identity of A, ¢g(e) = 1 and ||ef| = 1. Hence
1=g(e)=r =d(e,M), i.e., M is w-proximinal.

It is shown ([1]) that if A is a unital Banach algebra, then Spa(a) C
V(a). The following theorem gives the similar inclusion relation between

the spectrum Sps(a) and the relative numerical range of a in a non
unital normed algebra A.

THEOREM 2.10. Let A be a normed algebra over C having the first
or second proximinal property, and a € A. Then {0}¢ N Sph(a) C
VE(A,a) for some x € A with ||z|| = 1.
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Proof. Assume that A has the first proximinal property. Let A €
Spﬁ(a) and A # 0. Define j = A\7la. Then j is not left quasi-regular,
i.e. there does not exist a h € A such that hoj = h+ 7 — hy = 0.
Thus A(1 — j) is a left modular ideal M of A, so A(1 — j) is contained
in a left maximal modular ideal of A. By the first proximinal property,
there exists z € A with 1 = ||z|| = d(z,M). By Lemma 2.8, there
exists f € A* such that f(M) = {0},1 = ||f|| = f(z). Also z —zj € M
implies 0 = f(z — zj) = f(z) — f(zj) =1~ A"'f(za). Then f(za) =
A € er,L(Av a)

Assume that A has the second proximinal property. For a € A,
a is an element of a maximal commutative subalgebra B of A. Let
A €{0}NSpa(a) = {0}°NSpp(a). The second proximinal property for
A implies the first proximinal property for B, so by the first argument,
A€ VE(B,a) C VL(A, a) for some z € B.

THEOREM 2.11. Let A be a normed algebra over C having the first
or second proximinal property and a € A. Then {0} N Spf(a) C
VE(A,a) for some z € A with ||z|| = 1.

Proof. The proof is similar to that of Theorem 2.10.

COROLLARY 2.12. Let A be a normed algebra over C having the

first or second proximinal property and a € A. Then {0}° N Spa(a) C
V.(A.a) for some z € A with ||z| = 1.

Proof. Since Spa(a) = Sp5(a)U Spfi(a), for any A € {0} N Spala),
either A € {0}° N Spk(a) or A € {0}°N Sp%(c). Assume that X €
{0} Spk(a). Then by Theorem 2.10,

A€ V(A a) C V(A a) forsome z € A.
Similarly if A € {0} Sp%(a), then by Theorem 2.11,

Ae VE(A a) C V(A a) for some z€ A.

Therefore {0}° N Spa(a) C V;(A,a) for some r ¢ A.
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THEOREM 2.13. Let A be a normed algebra over C with the first or
second proximinal property and an identity e, but ||e|| not necessarily
1. Ifa € A and 0 € Sp4(a), then 0 € VX(A,a) for some = € A with
=l = 1.

Proof. If A has the first proximinal property and 0 € Sp4(a). then
a 1s not left regular, so Aa is a left modular ideal of A. Therefore Aa
1s contained in a left maximal modular ideal M of A. Note that since
A has e, all ideals are modular. By hypothesis, there exists = € 4 with
1 =|z|| = d(z,M). Also by Lemma 2.8, there exisis ¢ € A’ with 1 =
llgll = g(z) and g(M) = {0}. Thus za € M, so 0 = g(za) € VF(A.a).

If A has the second proximinal property, then a is an element of
a maximal commutative subalgebra B of A, and ¢ € B. Since 0 €
Sphi(a) = Spk(a) and the second proximinal property for 4 implies the
first proximinal property for B, by the first argument. 0 € VX(B.a) =
VI(A, a) for some z € B.

THEOREM 2.14. Let A be a normed algebra over C with the first or
second proximinal property and an identity e, but i|e|| not necessarily
1. Ifa € A and 0 € Sp¥(a), then 0 € VR(A, a) for some = € A with
=l = 1.

Proof. The proof is similar to that of Theorem 2.13.

COROLLARY 2.15. Let A be a normed algebra over C with the first
or second proximinal property and an identity e, but |le|| not necessarily
1. Ifa € A and 0 € Spa(a), then 0 € V,(A,a) for some z € A with
=l = 1.

THEOREM 2.16. Let A be a normed algebra such that all proper
closed one-sided ideals of A are w-proximinal. Let ¢ € A with 0 €
Spala). If aA or Aa is properly contained in A, then 0 € V.(A.a) for
some z € A with ||z]] = 1.

Proof. Clearly ¢A and Aa are proper closed one-sided ideals of A.
By hypothesis there exists z € A with 1 = ||z|| = diz, 4a) or d(z,ad).
By Lemma 2.8, there exists g € A’ such that g(2) = ||g|| = 1 and g(aA)
or g(Aa) = {0}. So 0 = g(za) € VI (A,a) or 0 = g(az) € VE(A a)
Hence 0 € V,(A4, a)
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THEOREM 2.17. Let A be a finite dimensional complex normed al-
gebra and let a € A. Then

(1) {0}°N Spa(a) C V.(A,a) for some z € A with ||z]| = 1.

(2) aA and Aa are closed. If one of them is proper, then 0 €
V:(A,a) for some =z € A with ||z|]| = 1.

(3) If aA = A = Aaq, then A has an identity e, a is invertible and
0 ¢ Spala).

(4) Spa(a) CV,(A, a) for some z € A with ||z]| = 1.

Proof. By Lemma 2.4, all proper ideals are closed and w-proximinal.

(1) By Corollary 2.12, {0}°NSpa(a) C V.(A,a) for some z € A with
=l = 1.

(2) aA and Aa are clearly closed. If one of them is proper, then a
1s singular i.e., 0 € Sp4(a). By Theorem 2.16, 0 € V,.(A,a) for some
z € A with ||z]| = 1.

(3) There are z,w € A such that za = a = aw. Also z € A implies
r = pa = aq for some p,q € A. So 2w = paw = pa = 7 and 27 = zaq =
aq = z. Hence e = z = w and a 1s invertible.

(4) (Aa)N(aA) C Aor = A. If (Aa)N(aA) is properly contained in A,
then one of them is proper. By (1) and (2), {0} N Spa(a) C V.(A,a)
and 0 € V;(A,a) for some 2z € A with ||z|] = 1. Since 0 € Spa(a).
Spa(a) CV.(A,a) for some z € A with ||z]| = 1.

If (Aa) N (aA) = A, then by (3) 0 ¢ Spa(a) and by (1) {0}° N
Spa(a) € V.(A,a) for some z € A with ||z]| = 1. Hence Spu(a) C
V.(4,a).
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