SPECTRA AND NUMERICAL RANGES

YOUNGOH YANG

1. Introduction

The theory of numerical ranges in unital normed algebras has extensively studied by many authors, for example, see [1], [2] for details.

Let x be a fixed element of a non unital normed algebra A over a field $K = \mathbb{R}$ or \mathbb{C} . In [8], Yang introduced the notion of right(left) relative numerical range $V_x^R(A,a)(V_x^L(A,a))$ of an element a of a non unital normed algebra A relative to $x \in A$ (see Definition 2.1). If x = e, the identity of A and $\|e\| = 1$, then $V_x^R(A,a)$ coincides with V(a) where V(a) denotes the (Bonsall and Duncan) numerical range of a ([2]). Since x can be arbitrarily chosen, this concept extends the familiar concept of numerical range. Among the results, it is shown ([8]) that our numerical range is a compact convex subset of K.

In this paper, we introduce the notion of w-proximinal subspace of a normed linear space and show that every proper closed left or right ideal of a unital Banach algebra is w-proximinal. Also we give an example which is not a w-proximinal subspace.

It is shown ([1]) that if A is a unital Banach algebra, then $Sp_A(a) \subset V(a)$. Further, we introduce the notions of proximinal properties of a normed algebra, and for a normed algebra A having proximinal property, we give the similar inclusion relation between the spectrum $Sp_A(a)$ and the relative numerical range of $a \in A$. In particular we show that if A is a normed algebra having the first proximinal property or second proximinal property and $a \in A$, then $\{0\}^c \cap Sp_A(a) \subset V_x(A,a)$ for some $x \in A$ with ||x|| = 1.

Received December 9, 1995. Revised March 11, 1996.

¹⁹⁹¹ AMS Subject Classification: 47A12.

Key words and phrases: relative numerical ranges, proximinal.

This paper was supported (in part) by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1994.

2. Spectra and relative numerical ranges

In this section, we introduce the concept of proximinal property of a normed algebra and study the inclusion relation between the spectrum and the relative numerical range.

DEFINITION 2.1. ([8]) Let A be a normed algebra over the field $K = \mathbb{R}$ or \mathbb{C} , and A' its dual. For $x \in A$, we write

$$D(A, x) = \{ f \in A' : ||f|| = 1, f(x) = ||x|| \}.$$

The right relative numerical range of $a \in A$ relative to x is defined to be $V_x^R(A,a) = \{f(ax) : f \in D(A,x)\}$. The left relative numerical range of $a \in A$ relative to x is defined to be $V_x^L(A,a) = \{f(xa) : f \in D(A,x)\}$. The relative numerical range of a relative to x is defined to be $V_x(A,a) = V_x^R(A,a) \cup V_x^L(A,a)$. The right relative numerical radius of a relative to x is defined by $v_x^R(a) = \sup\{|\lambda| : \lambda \in V_x^R(A,a)\}$. The left relative numerical radius of a relative to x is defined by $v_x^L(a) = \sup\{|\lambda| : \lambda \in V_x^L(A,a)\}$. The relative numerical radius of a relative to x is defined by $v_x(a) = \max\{v_x^R(a), v_x^L(a)\}$.

Note that the set D(A, x) is a nonempty subset of A' by the Hahn-Banach Theorem, and so $V_x^R(A, a)$ and $V_x^L(A, a)$ are nonempty. If A is commutative, then $V_x^R(A, a) = V_x^L(A, a) = V_x(A, a)$ as f(ax) = f(xa). If x = e(identity of A) with ||e|| = 1, then $V_e(A, a) = V(a)$, where V(a) denotes the (Bonsall and Duncan) numerical range of a ([2]). Thus the concept of relative numerical range extends that of the (Bonsall and Duncan) numerical range.

LEMMA 2.2. ([8]) Let a, x be elements of a normed algebra A. Then

- (1) D(A, x) is a weak* compact convex subset of A'.
- (2) $V_x^R(A, a)$ and $V_x^L(A, a)$ are compact convex subsets of K, hence $V_x(A, a)$ is a compact subset of K.
- (3) If B is a subalgebra of a normed algebra A and $b, x \in B$, then $V_x(B, b) = V_x(A, b)$.

We introduce the concept of a w-proximinal subspace in the following:

DEFINITION 2.3. Let X be a normed linear space and M a proper subspace of X. M is called w-proximinal if there exists an element $z \in X$ such that 1 = ||z|| = d(z, M).

It is easy to show that every proximal subspace of a normed space is w-proximinal. But it is unknown whether the converse holds or not.

EXAMPLE 2.4. (1) Let $X = \mathbb{R}^2$ and let M be the x-axis. Then M is clearly a proper subspace of a normed linear space X, and 1 = ||x|| = d(x, M) for some $x = (0, 1) \in X$.

(2) Let $X = l^{\infty}$ be the set of all bounded sequences and let $M = c_0$ be the set of all sequences that converge to 0. Then M is a closed subspace of X and hence is a Banach space(not reflexive). Also $1 = ||x|| = d(x, c_0)$ for some $x = \{1 - \frac{1}{n}\}$ in X. Hence c_0 is a w-proximinal subspace of l^{∞} .

LEMMA 2.5. ([4]) Suppose X is a normed linear space over \mathbb{R} or \mathbb{C} . Let M be a finite dimensional proper subspace of X. Then there exists an $x \in X$ such that 1 = ||x|| = d(x, M) where d(x, M) is the distance from x to M.

From the above lemma, every finite dimensional proper subspace of a normed linear space is w-proximinal.

Example 2.6. Let $L: C[0,1] \longrightarrow K$ be defined by

$$L(f) = \int_0^{1/2} f(x)dx - \int_{1/2}^1 f(x)dx.$$

Then ||L|| = 1 and $d(f, \ker L) = |L(f)|$ by ([7], problem 3, p138). Thus there does not exist $g \in C[0,1]$ such that 1 = ||g|| = |L(g)|, i.e., $\ker L$ is not w-proximinal.

Let A be a normed algebra but do not assume that A has an identity. We say that a left ideal I is modular if there exists $e \in A$ such that $A(1-e) \equiv \{a-ae: a \in A\} \subset I$. e is called a right modular unit for I. Similarly, a right ideal I is modular if there exists a left modular unit for I. A two-sided ideal I is modular if it is modular both as a left and as a right ideal([3]).

DEFINITION 2.7. Let A be a normed algebra. A is said to have the first proximinal property if every one-sided maximal modular ideal of A is w-proximinal. A is said to have the second proximinal property if every maximal modular ideal of a maximal commutative subalgebra of A is w-proximinal.

By definition, a w-proximinal subspace of a normed linear space has proper closure. So every w-proximinal maximal modular left ideal is closed.

LEMMA 2.8. ([5]) Let M be a subspace of a normed linear space X. Given $x \in X$ with d = d(x, M) > 0, there exists an $f \in X'$ such that

$$||f|| = 1$$
, $f(M) = \{0\}$ and $f(x) = d(x, M)$.

Let r(A) denotes the set of regular elements in a normed algebra A and N(a,r) the open ball at $a \in A$ of radius r. For an element a of A, let $Sp_A(a)$, $Sp_A^L(a)$ ($Sp_A^R(a)$) denote the spectrum, left(right) spectrum of a with respect to A respectively.

THEOREM 2.9. Let A be a unital Banach algebra. Then every proper closed left or right ideal M of A is w-proximinal. In particular, any unital Banach algebra has the first and second proximinal properties.

Proof. Let M be any proper closed left or right ideal of A. If $x \in N(e,1)$, then ||e-x|| < 1 and so x is regular in A by ([3], Lemma 2.1). Hence $e \in N(e,1) \subseteq r(A) \subseteq M^c$ and $e \notin M$. Put r = d(e,M). By Lemma 2.8, there exists $g \in A'$ such that g(e) = r, ||g|| = 1 and $g(M) = \{0\}$. Since e is an identity of A, g(e) = 1 and ||e|| = 1. Hence 1 = g(e) = r = d(e,M), i.e., M is w-proximinal.

It is shown ([1]) that if A is a unital Banach algebra, then $Sp_A(a) \subset V(a)$. The following theorem gives the similar inclusion relation between the spectrum $Sp_A(a)$ and the relative numerical range of a in a non unital normed algebra A.

THEOREM 2.10. Let A be a normed algebra over \mathbb{C} having the first or second proximinal property, and $a \in A$. Then $\{0\}^c \cap Sp_A^L(a) \subset V_x^L(A,a)$ for some $x \in A$ with ||x|| = 1.

Proof. Assume that A has the first proximinal property. Let $\lambda \in Sp_A^L(a)$ and $\lambda \neq 0$. Define $j \equiv \lambda^{-1}a$. Then j is not left quasi-regular, i.e. there does not exist a $h \in A$ such that $h \circ j \equiv h+j-hj=0$. Thus A(1-j) is a left modular ideal M of A, so A(1-j) is contained in a left maximal modular ideal of A. By the first proximinal property, there exists $x \in A$ with 1 = ||x|| = d(x, M). By Lemma 2.8, there exists $f \in A^*$ such that $f(M) = \{0\}, 1 = ||f|| = f(x)$. Also $x - xj \in M$ implies $0 = f(x - xj) = f(x) - f(xj) = 1 - \lambda^{-1}f(xa)$. Then $f(xa) = \lambda \in V_x^L(A, a)$

Assume that A has the second proximinal property. For $a \in A$, a is an element of a maximal commutative subalgebra B of A. Let $\lambda \in \{0\}^c \cap Sp_A(a) = \{0\}^c \cap Sp_B(a)$. The second proximinal property for A implies the first proximinal property for B, so by the first argument, $\lambda \in V_r^L(B,a) \subseteq V_r^L(A,a)$ for some $x \in B$.

THEOREM 2.11. Let A be a normed algebra over \mathbb{C} having the first or second proximinal property and $a \in A$. Then $\{0\}^c \cap Sp_A^R(a) \subset V_x^R(A,a)$ for some $x \in A$ with ||x|| = 1.

Proof. The proof is similar to that of Theorem 2.10.

COROLLARY 2.12. Let A be a normed algebra over \mathbb{C} having the first or second proximinal property and $a \in A$. Then $\{0\}^c \cap Sp_A(a) \subset V_x(A,a)$ for some $x \in A$ with ||x|| = 1.

Proof. Since $Sp_A(a) = Sp_A^L(a) \cup Sp_A^R(a)$, for any $\lambda \in \{0\}^c \cap Sp_A(a)$, either $\lambda \in \{0\}^c \cap Sp_A^L(a)$ or $\lambda \in \{0\}^c \cap Sp_A^R(a)$. Assume that $\lambda \in \{0\}^c \cap Sp_A^L(a)$. Then by Theorem 2.10,

$$\lambda \in V_x^L(A, a) \subseteq V_x(A, a)$$
 for some $x \in A$.

Similarly if $\lambda \in \{0\}^c \cap Sp_A^R(a)$, then by Theorem 2.11,

$$\lambda \in V_z^R(A, a) \subseteq V_z(A, a)$$
 for some $z \in A$.

Therefore $\{0\}^c \cap Sp_A(a) \subset V_x(A,a)$ for some $x \in A$.

THEOREM 2.13. Let A be a normed algebra over $\mathbb C$ with the first or second proximinal property and an identity e, but $\|e\|$ not necessarily 1. If $a \in A$ and $0 \in Sp_A^L(a)$, then $0 \in V_z^L(A,a)$ for some $z \in A$ with $\|z\| = 1$.

Proof. If A has the first proximinal property and $0 \in Sp_A^L(a)$, then a is not left regular, so Aa is a left modular ideal of A. Therefore Aa is contained in a left maximal modular ideal M of A. Note that since A has e, all ideals are modular. By hypothesis, there exists $z \in A$ with 1 = ||z|| = d(z, M). Also by Lemma 2.8, there exists $g \in A'$ with 1 = ||g|| = g(z) and $g(M) = \{0\}$. Thus $za \in M$, so $0 = g(za) \in V_z^L(A, a)$.

If A has the second proximinal property, then a is an element of a maximal commutative subalgebra B of A, and $e \in B$. Since $0 \in Sp_A^L(a) = Sp_B^L(a)$ and the second proximinal property for A implies the first proximinal property for B, by the first argument, $0 \in V_z^L(B, a) = V_z^L(A, a)$ for some $z \in B$.

THEOREM 2.14. Let A be a normed algebra over \mathbb{C} with the first or second proximinal property and an identity e, but ||e|| not necessarily 1. If $a \in A$ and $0 \in Sp_A^R(a)$, then $0 \in V_z^R(A,a)$ for some $z \in A$ with ||z|| = 1.

Proof. The proof is similar to that of Theorem 2.13.

COROLLARY 2.15. Let A be a normed algebra over \mathbb{C} with the first or second proximinal property and an identity e, but ||e|| not necessarily 1. If $a \in A$ and $0 \in Sp_A(a)$, then $0 \in V_z(A, a)$ for some $z \in A$ with ||z|| = 1.

THEOREM 2.16. Let A be a normed algebra such that all proper closed one-sided ideals of A are w-proximinal. Let $a \in A$ with $0 \in Sp_A(a)$. If \overline{aA} or \overline{Aa} is properly contained in A, then $0 \in V_z(A, a)$ for some $z \in A$ with ||z|| = 1.

Proof. Clearly \overline{aA} and \overline{Aa} are proper closed one-sided ideals of A. By hypothesis there exists $z \in A$ with $1 = \|z\| = d(z, \overline{Aa})$ or $d(z, \overline{aA})$. By Lemma 2.8, there exists $g \in A'$ such that $g(z) = \|g\| = 1$ and $g(\overline{aA})$ or $g(\overline{Aa}) = \{0\}$. So $0 = g(za) \in V_z^L(A, a)$ or $0 = g(az) \in V_z^R(A, a)$. Hence $0 \in V_z(A, a)$

THEOREM 2.17. Let A be a finite dimensional complex normed algebra and let $a \in A$. Then

- (1) $\{0\}^c \cap Sp_A(a) \subseteq V_z(A, a)$ for some $z \in A$ with ||z|| = 1.
- (2) aA and Aa are closed. If one of them is proper, then $0 \in V_z(A, a)$ for some $z \in A$ with ||z|| = 1.
- (3) If aA = A = Aa, then A has an identity e, a is invertible and $0 \notin Sp_A(a)$.
- (4) $Sp_A(a) \subseteq V_z(A, a)$ for some $z \in A$ with ||z|| = 1.

Proof. By Lemma 2.4, all proper ideals are closed and w-proximinal.

- (1) By Corollary 2.12, $\{0\}^c \cap Sp_A(a) \subseteq V_z(A, a)$ for some $z \in A$ with ||z|| = 1.
- (2) aA and Aa are clearly closed. If one of them is proper, then a is singular i.e., $0 \in Sp_A(a)$. By Theorem 2.16, $0 \in V_z(A, a)$ for some $z \in A$ with ||z|| = 1.
- (3) There are $z, w \in A$ such that za = a = aw. Also $x \in A$ implies x = pa = aq for some $p, q \in A$. So xw = paw = pa = x and zx = zaq = aq = x. Hence e = z = w and a is invertible.
- (4) $(Aa) \cap (aA) \subset A$ or = A. If $(Aa) \cap (aA)$ is properly contained in A, then one of them is proper. By (1) and (2), $\{0\}^c \cap Sp_A(a) \subseteq V_z(A, a)$ and $0 \in V_z(A, a)$ for some $z \in A$ with ||z|| = 1. Since $0 \in Sp_A(a)$, $Sp_A(a) \subseteq V_z(A, a)$ for some $z \in A$ with ||z|| = 1.
- If $(Aa) \cap (aA) = A$, then by (3) $0 \notin Sp_A(a)$ and by (1) $\{0\}^c \cap Sp_A(a) \subseteq V_z(A,a)$ for some $z \in A$ with ||z|| = 1. Hence $Sp_A(a) \subseteq V_z(A,a)$.

References

- F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press, Cambridge. 1971.
- F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press, Cambridge, 1971.
- J. B. Conway, A Course in Functional Analysis, Springer-Verlag Inc, New York, 1985.
- 4. S. Goldberg, Unbounded Linear Operators, McGraw Hill, New York, 1966.
- Martinez, Numerical range without Banach algebras, Illinois J. Math. 29 (1985), 609-625.

Youngoh Yang

- C. E. Rickart, General Theory of Banach Algebras, D. van Nostrand Co., Inc, 1960.
- 7. A. E. Taylor, *Introduction to Functional Analysis*, Wiley and Sonspubladdr New York, 1980.
- 8. Y. Yang, Numerical Ranges in non unital normed algebras, Comm. Korean Math. Soc. 8 (1993), 669-678.

DEPARTMENT OF MATHEMATICS, CHEJU NATIONAL UNIVERSITY, CHEJU 690-756, KOREA