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THE CONSISTENCY ESTIMATION IN
NONLINEAR REGRESSION MODELS WITH
NONCOMPACT PARAMETER SPACE

SEUNG HOE CHol, HAE KYUNG KIM AND SO0OK HEE JANG

1. Introduction

We consider in this paper the following nonlinear regression model
(1.1) Y = f(z4,0,) + €, t=1,..,n,

where y, is the tth response, z; is m-vector input variable, 6, is a p-
vector of unknown parameter belong to a parameter space ©, f:R™ x
© — R! is a nonlinear known function, and ¢, are independent unob-
servable random errors with finite second moment. )

The L;-norm estimator of 8, based on (y;,x;, denoted by 6, is a
vector which minimizes the mean absolute deviation

N

(12) Dy(6) = = " Ir(6)

i=1

where ry(8) = y, — f(z,6). The Li-norm estimator is a paticular case
with p(x) = |z| of a general class of robust methods based on minimizing

(1.3) Sall) = =3 p(re(8)).

t=1
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where p is a convex function on R.

The asymptotic properties of the nonlinear least square estimator
are investigated by Jennrich(1969) and Wu (1981) when the parame-
ter space is a compact subset of RP. In a recent paper, Shao (1993)
proved the strong consistency of nonlinear least square estimator under
more general conditions. For the Ly-norm estimator, Oberhober (1982)
showed weak consistency of 6,,, and Kim and Choi (1995) gave sufficient
conditions for strong consistency and asymptotic normality of 6, when
the parameter space is a compact set. Richardson and Bhattacharyya
(1987) proposed sufficient condition for strong consistency when the
parameter space is a noncompact set. In addition, they assumed that
the regression function f(z,#) is bounded for compactification. How-
ever, the regression function f(z,6), in many situations, is unbounded
when the parameter space is noncompact subset of RP. For this, we
now discuss an example given by many authors.

ExAMPLE 1. Consider the exponential model
Y = 6]6_92“ + €4, (91,92) €0 = {0 : 6 # 0.0<by < d}.

where d 1s a fixed positive real number. Since 0 is noncompact subset of
R? and f(x,4) is unbounded, Oberhober’s condition and Richardson’s
condition do not hold in this example.

The main purpose of this paper is to provide simple sufficient con-
ditions for the strong consistency of the Lj-norm estimator and p-
estimator, denoted by 6,,, which is minimizing (1.3) when the parameter
space is a noncompact subset of R? and the regression function f(x, )
1s unbounded.

2. Strong Consistency

In this section we will present sufficient conditions for strong con-
sistency of the Li-norm estimator in model (1.1). In fixed-regression
approach, there are two types of input vectors z;s;

Deterministic regressor: The vector « are nonrandom and ||z|| < b,
where b, 1s a positive constant.
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Conditional regressor: The vector z are independently and identi-
cally distributed with distribution function F and z is bounded in prob-
ability. i.e, for any € > 0, there exists @ > 0 such that P{||z|| > a} < e.

Let 6* be any fixed parameter in ©. Let A be a ray from true param-
eter B, le, A={pec0©:0=n(A,+(1-N)0*),6 < A<1,n¢€RT}

We will use the following conditions throughout paper.

CONDITION A.
Condition 4;. lm |f(z,8)| = oc.

8]l —oc
Condition A,. For each 6 € A, there exists a constant v such that

lim flo,pn) = .

)l ==

Many regression models which are occurred in statistical problems

satisfy the condition A; or A,.
Note that © is a compact set, we can construct a function h on RP

such that h|le = f and Halﬁm g(z,0) = f(z,a), where a € B(O)NA and

B(0©) is boundary set of parameter space. Hence, the function f(zr.#6)
has a continuous extention which satisfies the condition A,.

Let (¢ denote the distribution function of €; and Px the probability
measure on ™. For the strong consistency, we will assume the following

AssuMPTION B.

B, . For each t, the function f,(6) = f(x, 6) is continuous .

B,. ¢; and X are independent and ¢, has a unique median at zero.

B;. Px{z € R™|f(x,0) # f(x,0,)} > 0 for each 6 # 6,.

B,. There exists a b(z) such that | f(x, 8) f(z,0")] < b(z) and E(b*(z))
< oc, for finite 8 and 6'.

REMARK. The assumption B, always holds in deterministic regres-
sor because of the assumption Bj. For finite 6 # 6, the assumption B,
implies that L 3~ {d,(8)}* converges to a positive continuous function
uniformly due to the assumption B; and that lim iréf—rl; S {d0)}? >

n—oc
0 given in Shao (1993), where d,(0) = f(z:,0) — j(z,6,).

In following theorem we provide the sufficient conditions for the
strong consistency of the Li-norm estimator in model (1.1).
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THEOREM 2.1. Under the condition A, assume that the model (1.1)
satisfies the assumption B. Then the Li-norm estimator 6,, defined on
(1.2) is strong consistent for 8,,.

Proof. For any 6 > 0, it is sufficient to show that

(2.1) lim inf {Dn(8)— D,(6,)} >C ae.
n—oo ||8—-6,||>6

First, assume the condition A;. Let N = {t : |e;] > a}, where a > 1.
Then

Da(6) = {3 I+ Y fed)

teEN® teN

1
<a+ — €2
Sat—) ¢

teN

Since €; has finite variance, there exists a positive constant M such
that D,(6,) < M for sufficiently large n. Let B, = {6 : |6 — 8, <
Nm} Where np, is a strictly increasing sequence. Then B, is increasing
sequence and lim B, = RP. Due to the condition 4;, with probability

m-—0oC
greater than 1 — e, we get

|du(6)] = o0 as ||6]] — oo

for any e and all t. Thus, we can choose m' such that D,(#,) =
LSl + di(8:)] > M, for all 8 € BE,. Therefore the L;-norm
estimator 8, belong to B (2.1) follows boundness of {6,} and the
result of theorem 2.1 in Kim and Choi (1995).

Assume that the condition A,. Let I" be the set of all ray from 6,
denoted by A, and Ap, = {p € A: 6 < || —6,]| < 1ym}. It is enough to
show that

inf lim inf {Dp(u)— Dn(6,)} >0 ae.

I" m—oou€A o,
for sufficiently large n. For this, let HA = A,,NAS,_,(m > 2). In virtue
to the condition Aj, there exists my such that dy(p) = fi(6,) — va for
p € HA and m > my. (= denotes asymptotically equivalent). Due to
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the assumption By, with probability greater than 1 — ¢ we can choose
b(z) such that df(u) < by(z) and Eb%(x) < oo for each u € HA and
m > my. From the strong law of large number (SLLN) for non - i.i.d
case,

Dals) = Dala) = = 3" B{lec+ fl6o) —1al — ledl} + o(1)
=1

Note that
E{le; + fi(85) — va| — |ed]}
= [Hle=extwl = )G IaF ()

= /[{.s(rl(u))e —s(e)e — s(r(p))er(p) }dGe(e)dF (),

where I = R™ x R, s(z) = sign(z), and ci(p) = ya — fi(6,). Next, by
a simple calculation, we obtain
2 [ Jy' " (er(p) = )G (e)dF(ay).
if ei(p) >0
2 fam Joy (€ = 1(p)dG el e)dF (r1).
if ey(pu) <0

E{ler — c(p)| = le]} =

On the other hand, for m > m, we have

inf Bller — calp)] - fed) > fglf//{l* ~|e[}dG (e)dF (z1),

where w = {z € R™|f(z,u) /S~ f(x,8,)}. Moreover, there exists a
positive number s less than ¢;{g) such that fog dG(e) > 0 because of
the assumption B2. Hence,

inf — ZE{Iet—ct ) = leel} > 7a,

HAn
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where 74 is a positive number. Let m* = sup{mny : A € T'}. Then, for
m > m*

|l9—91arll!f277m' {Dn(6)— D, (0,)} = 1111f“€1‘rA11;*{Dn(p) —Dp(8,)} > 7 ae.,

where 7y = inf{7 : A € T'}.
From the theorem 2.1 in Kim and Choi (1995), we have

. f D 9 *Dl o > N G
‘SS“B—I;?;HSW,,*{ n( ) 7(6 )} 2 T2 acl

where 7, is a positive number. Hence, for sufficiently large n we have

inf  {D,(8) — Dn(4, -
o5t DR (0) (65)} > 7 a

where 7 = min{7, 73}. The proof is completed.

For the applications of the theorem 2.1, we consider now the nonlin-
ear regression model with noncompact parameter space.

EXAMPLE 2. Let s be a fixed positive real number. Consider the
logistic model

b3

yth(Iﬁ):W

+ €

where 6, € © = (0,00) x (—s,5) x (0,0¢) and —20 < 7 < o0. Assume
that €; are independent random variable having median zero uniquely.
We can check easily that the condition 4,, and the assumption B; and
B, are satisfied. Since f(z,0) = f(z,6') if and orly if 6, = 6.0, =
65, and 63 = 6}, the regression function satisfy the assumption Bs.
Under same conditions, we can show that the L; norm estimator in
exponential model converges to ¢, almost surely.

For the sufficient condition of p-estimator, we impose upon an iden-
tifiable. The true parameter 6, is identifiable if for each neighborhood
V of #,, there exists n, and € > 0 such that E(S,(6)) — E(S,(8,)) > ¢
for each 6 € V,n > n,. (See [4].) The next result concerns with the
strong consistency of the p-estimator.
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THEOREM 2.2. Assume that the model (1.1 satisfies the assump-

tions B, and B,,8, is identifiable, and that Ep“(r,(6)) < o for finite
6 € O. Then the p-estimator 6,, which minimizing (1.3) converges al-
most surely to 8,,.

Proof. The proof is similar to that of theorem 2.1 because of the

property of convex and continuous function.
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