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BEST SIMULTANEOUS APPROXIMATIONS
IN A NORMED LINEAR SPACE

SunGg Ho PARK

1. Introduction

We characterize best simultaneous approximations from a finite-
dimensional subspace of a normed linear space. In the characterization
we reveal usefulness of a minimax theorem presented in [2,4].

We present this minimax theorem and some corollaries in [4]. In [3],
4], [5] and [6], we can find characterizations of best uniform approxima-
tions and best simultaneous approximations fror: a finite-dimensional
subspace of continuous functions from a compact Hausdorfl space to a
normed linear space. Next, we give a characterization of best simulta-
neous approximations from a finite-dimensional subspace of a normed
linear space. Finally, we give a characterization of best simultaneous
approximations from a convex set in a finite-dimensional subspace of a
normed linear space.

Let U and V be nonempty compact convex subsets of two Hausdorff
topological vector spaces. Suppose that a function J : U x V. — R is
such that for each v € V, J(-,v) is lower semi-continuous and convex
on U, and for each u € U, J(u,-) is upper semi-continuous and concave
on V. Then, as is well known [2], there exists a saddle point (u*,v*) €
U x V such that

{1-1) J(u*,v) < J(u*,v*) < J(u,v%), uel,veV,
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that is,

minmax J(u,v) = max min J(u,v).
uel veV veV uel

However, if the set V' is not convex, or if for some u € U, J(u, ) is not
a concave function on V', the relation (1-1) does not hold in general.

We present here a generalized minimax theorem that holds even
under these conditions.

Let U be a nonempty compact convex subset of a Hausdorff topo-
logical vector space, and let V' be an arbitrary noncmpty set. Suppose
that J : U x V' — R is such that for each v € 1V, J(-,v) is a lower
semi-continuous and convex function on U. For each positive integer p,
define the set
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THEOREM 1.1. [4]. Let U be an n-dimensionzl, compact convex
subset of a Hausdorff topological vector space (n > 1), and let V be a
compact Hausdorff space. Let J : U x V — R be a jointly continuous
function. Then u* € U minimizes max,cy J(u,v) over U if and only if
there exists (X;+1,F:l+1) € V41 such that

n+1 n+1 n+1

Yo ATt vy < ST ATt 0l < Y A (uv))
1=1 =1

1=1

holds for all (Xnﬂ,'ﬁn“) € Vn+1 and for all v € U.

2. The best simultaneous approximation in a normed linear
space

Let X be a normed linear space and let K be an n-dimensional
subspace of X. Suppose that z;,---,z, are in X. The problem is to
find an element k, € K which minimizes

2.1 k
(2-1) 1137%{[}\% I

368



Best simultaneous approximations in a normed linear space

over the subspace K. If such an element k, in A exists, we call it a
best simultaneous approximation for (z,- - ,x,) from K.

Remark that

£
2 = kIl = max|| 3 aya; - K|l

max
1<;5<¢ ;
<< s

where the set 4 is defined by

£
A={a=(ay, - ,ag)yzaj =1,a; >0(1<;j<0)}.

J=1

This follows from the expression

£
Za]-xj -k = Za]‘(l‘j — k)
j=1 ]

J=1

and the inequalities

¢

1< Z o

lrgjaéclllyjll _glggll ‘ 1a]yJH
]:

£

<ep Yl
< max ) ajlly;]

j=1

< yill.
< gg;@llyﬂ!

Then (2-1) can be expressed as

{
T — kil
gxgu;am |
]:

Thus the problem takes on the expression

¢
minimize max || E a,z; — k|| over the set I,
acA —
J:

Note that the set A is compact.
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THEOREM 2.1. Let K be an n-dimensional subspace of a normed

linear space X and ry, -+ ,2y € X. Then k, € K is a best simultaneous
approximation for X = (z,--- ,xy) from K if and only if there exist
Al A7 > 0, SP A =1, and p vectors a}, - ,ay € A, where
1 <p<n+1, such that
‘

. * _ . PO N P— . .
(i) Hzaz’j‘rj_kﬂu_112]‘.1%([”‘[]_}”0” t=1,.p:

P £

v

SNty - h
=1 7=1

ok
lrg;tngwJ oll

i

(ii)

ZA*HZa 2 kol

7=1

for any k € K.

Proof. (=) Let k, € R be a best simultaneous approximation for

X = (z, - ,z¢) from K and let

U=A{ke |||k, - k|| <1}.

Note that U is a Compact subset of KA. Applying Theorem 1.1 yields

the existence of A{,--- . Al >0, En+1 Al =1, and aj,---
such that
n+1 n+1
(2-2) ZA [k — Zaur,n > LA 1% 2 a4
J=1

for any (A1, -+, Aqy1) with Z?:ll Mi=land \; >0,i1=1,---

and a;; >0, 5 =1,--+ ¢, ijlazjzl;

n+1 n—+1 £
ETID SRS S el > S A=Y ale |
j=1 i=1 j=1

for ke U.
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Let us denote by Af,- -+, Ay the nonzero elements within Aj,--- A7 ||
and by aj,--- ,a, the corresponding elements within aj,--- ,a}, . The
assertion (i) follows from (2-2) which means, for i = 1,--- , p.

= kol = u — koll-
DT a1, — k|

1=1

On the other hand, it follows from (2-3) that

ZA Ik — Zazmn > ZA 1k, Za;xm

7=1

holds for any ¥ € U. Since the left-hand side it a convex function of
k and has a local minimum at k,, k, realizes a global minimum by a
property of convex functions. Thus (ii) follows.

(<) Conversely, suppose that (i) and (ii) hold. Let V, = {}X,[X, =

(Ao 0. 0P A =1, A >0(i=1,---,p)}. These two conditions
yield

P £

sup inf Adl lk—Za,-j;er
(Ap,a)ev xAkEh,' 1

v

ZHIA Z 1]

1=1 =1
= max HJ]—L I

1<j<e
and

sup mf Z)\ [|k — ZaijIjH

(T\P,E)EVP xA

7=1
< inf max Zai]-x]-H
KER (X, 8,)€V, x4 ]
= inf max ||z; —k||
ke K 1<;<¢
Therefore k, is a best simultaneous approximation for X = (z,, -+ ,xy¢)

from K.
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Let S be a compact Hausdorff space and T a normed linear space
with || - ||. Let C(S,T) denote the set of all continuous functions from
S to T and let K be an n-dimensional subspace of C(S,T). For f €
C(S5,T), we define the uniform norm of f by

LA zglggllf(r)ll

and endow the linear space C(.S,T) with the uniform topology. Suppose
that fy,---, f¢ are in C(S,T).

Furthermore, if we regard the set 4 as the set of ¢-dimensional row
vectors and denote by F(z) the column vector ( fi(z), fo(z), -+, fe(z))?,
Z§=1 ajf;(x) can be denoted by the inner product aF(z) of two vectors
a and F(z). By using Theorem 2.1, we get results for a continuous
function space. Next we give a theorem in [3].

THEOREM 2.2 [5]. A function f* € K is a best simultaneous ap-
proximation for (fi,---, f¢). if and only If there exist A}.-~- . A} >
O,Zle AT = 1, k distinct elements s},---,sf € S, and k vectors
aj,---,a; € A, where 1 <k <n+1, such that

(1) 1afF(s7) = f(s3)l} = max |If5(s) = (7]
= max llf = Sl o=k

(ii)
k k

D o AllarF(st) = sl > > AfllatF(s}) — £*(s7)]]
1=1 =1

forall f € K.

COROLLARY 2.3. Let K be an n-dimensional subspace of C(S5,T)
and f1, f2, -+ . fe € C(S,T). Then the following arc equivalent:

(1) f* € K is a best simultaneous approximation for F = (f1,--- , f¢).
(2) There exist AT, - - - , Ay >0, S P Ar=1, andpvectorsaj,- - ,a,
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€ A, where 1 < p <n+ 1, such that

£
(i) lllzaf]-fj = frlll = max |||f; = f*[]. e =1.-- . p;

1<5<e

P £ P 4
G DN anf; = =Y AN ayt; = £
=1 7=1 1=1

j=1

or . .
SlllarE - £l > S AzllarF - £l
=1 =1

for any f € K.

(3) There exist A},--- , A} > (),z:f:1 A¥ = 1, k distinct elements
81,-++, sy € 5, and k vectors a},--- ,a; € A, wherel < k <n+1,
such that

(i) aiF(s7) — f(s)ll = IIISI?SXEI’fj(‘S:) — sl
leil?ngPf;‘—f* =1k
(i1)

k k
> AfllarF(sy) = F(sIl = > AsllarF(sy) — f*(s7)]]
1==1

i=1
forall f € K.

Proof. By Theorem 2.1, (1) and (2) are equiva.ent. By Theorem 2.2,
(1) and (3) are equivalent.

3. Best simultaneous approximation from a convex set

Let X be a normed linear space and let C' be a convex subset of a
finite-dimensional subspace of X. Suppose that z;,--- ,r¢ are in X.
The problem is to find an element ¢, € C' which minimizes

(3-1) @ﬁﬂ%“kH
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over the convex set C. If such an element ¢, in C exists, we call it a
best simultaneous approximation for X = (z,,--- .z,) from C. As in
the section 2, we get

N

_k
max, ||z — k]

£
=yl 2 e b
J=1

where the set 4 is the same set as in the section 2. Then the above
problem takes on the expression

¢

minimize max || Zajxj — k|| over the set C.
acA —
]:

By the same argument as in the proof of Theorein 2.1, we can prove
the following Theorem 3.1.

THEOREM 3.1. Let C be a convex subset in an n-dimensional sub-

space of a normed linear space X and zy,--- ,x¢ ¢ X. Then ¢, € C
is a best simultaneous approximation for X = (xy,--- ,z¢) from C if
and only if there exist A}, --- ,)\; > 0, S2F_ A¥ =1, and p vectors
aj, --,a; € A, where 1 < p<n+1, such that
¢
(i) 13 ates = eall = g oy —eoll i =1
J:

P 14
DAY aias el 2 max llz; — o

i=1 j=1
P I4

(i) =YX afas - el

=1 7=1

for any c € C.

By using Theorem 3.1, we get a result for a continuous function
space. Next we give a theorem in [3].
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THEOREM 3.2 [3]. Let C be a convex subset in an n-dimensional
subspace of C(S,T) and f1,---,f¢ € C(S,T). Then a function f* €
C is a best simultaneous approximation for F = (f,.---, f;) if and
only if there exist A},--- A} > 0, Zle AY =1, k distinct elements
sj,+-.s8; € 5, and k vectors aj,--- .a} € A, where 1l < k < n 41,
such that

(i) laiF(s7) = fHsDI = max [1f;(s7) = FsD]
= lnsl?%celllfj =l i=1 ke
(ii)

k k
Y XrarF(sy) — FDI 2 Y AtllarF(sy) — £ (sl
=1 1=1

for all f € C.

The next corollary states that f* is a best simultaneous approxima-
tion on S if and only if it also is on some finite set of S.

COROLLARY 3.3. Let C be a convex subset in an n-dimensional
subspace of C(S,T). Then the following are equivalent:

(1) f* € C 1s a best simultaneous approximation for (f1, -, fi).

(2) There exist A7, -+, Ay > 0, S P Ar=1 andpvectorsaj,- - ,ay
€ A, where 1 < p <n+1, such that

£
) I asfy = 71l = max 1y = 1l i = Lo

Jj=1

p 14 P I3
) D NI effs = Flll= 3NN alifs = £l

=1
for any f € C.
(3) There exist A},--- A} > U,Zf:l/\f = 1, k distinct elements
8},--+, sy € S, and k vectors a},--- ,a; € A, where 1 <k < n +1,
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such that

(i)

1aiF(sT) = f*(sDIl = max ||f;(s7) = £*(s7)]]

1<5<E
= lrgja‘%{[’”f] - f*HI* 1= 1*" ) ﬂk:
(i)
k k
Yo AlaiF(sy) — FsDI > S AfllaF(sT) - £r(s7)]
=1 1=
k
=3 AlalF(s]) - (s
=1
forall f € C.

Proof. By Theorem 3.1, (1) and (2) are equivalent. By Theorem 3.2,

(1) and (3) are equivalent.
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