## DOMINATION PRESERVING LINEAR OPERATORS OVER SEMIRINGS

## GWANG-YEON LEE AND HANG-KYUN SHIN

Suppose  $\mathfrak{K}$  is a field and  $\mathcal{M}$  is the set of all  $m \times n$  matrices over  $\mathfrak{K}$ . If T is a linear operator on  $\mathcal{M}$  and f is a function defined on  $\mathcal{M}$ , then T preserves f if f(T(A)) = f(A) for all  $A \in \mathcal{M}$ .

Let  $\mathcal{M}$  be the set of all  $m \times n$  matrices over a semiring  $\mathcal{S}$ . In 1991, Beasley and Pullman characterized the linear operator on  $\mathcal{M}$  that preserve the term rank. In particular, they obtained the following theorem about a term rank preserver over a semiring.

THEOREM. A. [2]. If S is any semiring, then the followings are equivalent for any linear operator T on  $\mathcal{M} = \mathcal{M}_{m,n}(S)$ 

- (i) T is a (P, Q, B) operator.
- (ii) T preserves term rank.
- (iii) T preserves term rank 1 and term rank 2.
- (iv) T strongly preserves term rank 1.
- (v) T is nonsingular and preserves term rank 1 (when S is a field).

The above theorem is very useful for characterization of various linear preservers on  $\mathcal{M}_{m,n}(S)$ . In fact, Beasley and Pullman [1] obtained the characterization of permanent preserver and rook—polynomial preserver by using (P,Q,B)-operator. Also, Beasley, G. Y. Lee and S. G. Lee [3,4] characterized the linear operators on the real matrices which preserve the value of an assignment function of each matrix by using a term rank preserver.

In this paper, we prove that T is a nonsigular domination preserver and  $T(A^t) = T(A)^t$  for  $A \in \mathcal{M}_{2,2}(\mathcal{S})$  if and only if T is a term rank

Received March 27, 1995. Revised June 14, 1996.

<sup>1991</sup> AMS Subject Classification: 05C50, 15A04.

Key words and phrases: linear preserver, domination, term rank.

This study is supported by Korean Ministry of Education through Reaserch Fund (BSRI-96-1432).

preserver on  $\mathcal{M}_{m,n}(\mathcal{S})$ . Then, we shall have some useful tools that characterize linear preserving operators on  $\mathcal{M}_{m,n}(\mathcal{S})$ .

We start with some definitions. A semiring is a binary system  $(S, +, \times)$  such that (S, +) is an abelian monoid (identity 0),  $(S, \times)$  is a monoid (identity 1),  $\times$  distributes over +,  $0 \times s = s \times 0 = 0$  for all s in S, and  $1 \neq 0$ . Usually S denotes the system and  $\times$  is denoted by juxtaposition.

Here are some examples of semirings which occur in combinatorics. Let  $\mathbb{B}$  be any Boolean algebra, then  $(\mathbb{B}, \cup, \cap)$  is a semiring. Let  $\mathbb{F}$  be the real interval [0,1], then  $(\mathbb{F}, \max, \min)$  is a semiring. If  $\mathbb{P}$  is any subring of  $\mathbb{R}$ , the reals, and  $\mathbb{P}^+$  denotes the non-negative members of  $\mathbb{P}$ , then  $\mathbb{P}^+$  is a semiring.

Algebraic terms such as unit and zero divisor are defined for semirings as they are for rings.

The *linearity* of operators is defined as for vector space over fields.

Let  $\mathcal{M}_{m,n}(\mathcal{S})$  denote the set of all  $m \times n$  matrices over  $\mathcal{S}$ . The  $m \times n$  matrix of 1's is denoted  $J_{m,n}$ . Let  $E_{ij}$  denote the (0,1)-matrix whose only nonzero entry is in the (i,j) position. A cell is a multiple of  $E_{ij}$  for some (i,j), so that the set of cells is the set

$$\{\alpha_{ij}E_{ij}: \alpha_{ij} \in \mathcal{S}, \ 1 \le i \le m, \ 1 \le j \le n\}.$$

A linear operators over S is completely determined by its behavior on the set of cells in  $\mathcal{M}_{m,n}(S)$ .

From now on we will assume that  $2 \le m \le n$  unless specified otherwise, and let  $\mathcal{M} = \mathcal{M}_{m,n}(\mathcal{S})$  a fixed semiring  $\mathcal{S}$ .

The pattern,  $\overline{A}$ , of a matrix A in  $\mathcal{M}$  is the (0,1)-matrix whose (i,j)th entry is 0 if and only if  $a_{ij}=0$ . We will also assume that  $\overline{A}$  is in  $\mathcal{M}_{m,n}(\mathbb{B})$ , where  $\mathbb{B}$  denotes the Boolean algebra of two elements  $(\{0,1\},+,\times)$  where + is  $\cup$  and  $\times$  is  $\cap$ .

If A and B are in  $\mathcal{M}$ , we say that B dominates A (written  $B \geq A$  or  $A \leq B$ ) if  $b_{ij} = 0$  implies  $a_{ij} = 0$  for all i, j. We write B > A if  $B \geq A$  and  $A \ncong B$  where  $A \ncong B$  if and only if  $\overline{A} \neq \overline{B}$ . Note that  $A \leq B$  iff  $\overline{A} \leq \overline{B}$ , and that  $\overline{A + B} \leq \overline{A} + \overline{B}$  for all A and B.

If T is a linear operator on  $\mathcal{M}$ , let  $\overline{T}$ , its pattern, be the linear operator on  $\mathcal{M}_{m,n}(\mathbb{B})$  denoted by  $\overline{T}(\overline{\alpha_{ij}E_{ij}}) = \overline{T(\alpha_{ij}E_{ij})}$  for all (i,j). Then  $\overline{T(A)} \leq \overline{T}(\overline{A})$  for all  $A \in \mathcal{M}$ .

An important concept in the combinatorial theory of matrices is that of the term rank of a matrix. The  $term\ rank$  of A. t(A), is the minimum number of lines (rows or columns) which contain all the non-zero entries of A. Evidently the term rank of a matrix is the term rank of its pattern, i.e.,

$$t(A) = t(\overline{A}).$$

If P and Q are  $m \times m$  and  $n \times n$  permutation matrices, resp., B is an  $m \times n$  matrix in  $\mathcal{M}$  over  $\mathcal{S}$  none of whose entries is a zero divisor or zero, then T is a (P, Q, B)-operator if

- (i)  $T(X) = P(X \circ B)Q$  for all X in  $\mathcal{M}$  or
- (ii) m = n and  $T(X) = P(X^t \circ B)Q$  for all  $X \in \mathcal{M}$ .

Let T be a linear operator on  $\mathcal{M}$  such that if  $A \leq B$  then  $T(A) \leq T(B)$ . We call T a domination preserving operator on  $\mathcal{M}$ . From now on we will assume that T is a domination preserving linear operator on  $\mathcal{M}$ .

REMARK. Let  $\mathcal{M}$  be the set of  $2 \times 2$  matrices with entries from  $\mathbb{B}$ , the boolean algebra of two elements. Consider the following linear operator  $T: \mathcal{M} \to \mathcal{M}$ , where T is given by

$$T\left(\left[\begin{matrix} a & b \\ c & d \end{matrix}\right]\right) = \left[\begin{matrix} 0 & 0 \\ 0 & 0 \end{matrix}\right] \quad \text{whenever} \quad a,b,c,d \in \mathbb{B}.$$

Then T is a domination preserving operator since if

$$\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} \le \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$$

then

$$T\left(\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}\right) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \le T\left(\begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\right) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

i.e., 
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \le \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
. Since  $T$  sends  $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$  to the zero matrix,  $T$ 

is not nonsingular. For example, let 
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ .

Then, we know neither  $A \leq B$  nor  $B \leq A$ . But  $T(A) \leq T(B)$ . So, if T is singular then T is not much of interest. Therefore, we will assume that domination preserving linear operator T is nonsingular, from now on.

The number of nonzero entries of a matrix A is denoted by |A|.

LEMMA 1. The linear operator T is bijective on the set of cells.

*Proof.* Since T is nonsingular,  $|T(X)| \geq 1$  for all nonzero matrix X in  $\mathcal{M}$ . Let  $C_1, C_2, \cdots, C_{mn}$  are cells. Suppose that  $|T(C)| \geq 2$  for some cell C. Without loss of generality, let  $C = C_1$  and  $|T(C_1)| \geq 2$ . Let  $M_1 = \overline{C}_1$ . Then  $|T(M_1)| \geq 2$ . Let

$$M_{j} = \begin{cases} M_{j-1}, & \text{if } T(\overline{C}_{j}) \leq T(M_{j-1}); \\ M_{j-1} + \overline{C}_{j}, & \text{if } T(\overline{C}_{j}) \nleq T(M_{j-1}) \end{cases}$$

for  $j=2,3,\ldots,mn$ . Then  $|M_j| \leq |M_{j-1}|+1$  for all  $2 \leq j \leq mn$ . If equality hold for every  $2 \leq j \leq mn$ , then  $|T(M_j)| \geq j+1$  since  $C_j \nleq M_{j-1}$  and  $|T(M_1)| \geq 2$ . In particular,  $|T(M_{mn})| \geq mn+1$ , which is impossible. Thus  $|M_{mn}| \leq mn-1$  and there exists j such that  $M_j = M_{j-1}$  and  $T(\overline{C}_j) \leq T(M_{j-1})$ . Then, for the j,

$$T(J) = T(J \setminus \overline{C}_j).$$

Since T is nonsingular and  $J > J \setminus \overline{C}_j$ , this is a contradiction. Therefore, T(C) is a cell.

Now, let  $i \neq j$ , i.e.,  $C_i \neq C_j$ . Suppose that  $T(C_i) = T(C_j)$ . Then,  $\overline{T(C_i) + T(C_j)}$  is either  $\overline{T(C_i)}$  or  $\overline{T(C_j)}$  and

$$\overline{T(J)} = \overline{T[J \setminus (C_i + C_j) + C_i + C_j]}$$

$$= \overline{T[J \setminus (C_i + C_j)] + T(C_i) + T(C_j)}$$

$$= \overline{T[J \setminus (C_i + C_j)] + T(C_i)}$$

$$= \overline{T(J \setminus C_j)}.$$

But  $J > J \setminus C_j$ . Therefore,  $T(C_i) \neq T(C_j)$  by nonsingularity of T.

The following lemma 2 gives some domination properties for permutation and transposition.

LEMMA 2. For  $A, B \in \mathcal{M}$ , if  $A \leq B$  then

(i)  $PAQ \leq PBQ$  for any  $m \times m$ ,  $n \times n$  permutation matrices P and Q, respectively.

(ii)  $A^t \leq B^t$ .

*Proof.* The proof is straight forward.

REMARK. Let  $A \leq B$  for  $A, B \in \mathcal{M}$ . Then, we can possibly choose a matrix X in  $\mathcal{M}$  such that  $A + X \nleq B + X$ . For example, let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \ \text{and} \ X = \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}.$$

Then  $A \leq B$  and  $A+X \geq B+X$ . Thus, if T is a domination preserving operator, then T(A) does not have a form X+Y,  $X,Y \in \mathcal{M}$ , in general.

We note that the domination can be varied with multiplication of (invertible) matrices, in general. That is,  $UA \geq UB$  for  $A \leq B$ . For example, let

 $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ .

Then  $A \leq B$ . We can choose an (invertible) matrix  $U = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$ . Then

$$UA = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \ge \begin{bmatrix} 1 & 5 \\ 2 & 0 \end{bmatrix} = UB.$$

Therefore, the domination preserving operator T does not have a form T(A) = X + Y and T(A) = UAV for some matrices X, Y, U, V, in general.

LEMMA 3. For  $A \in \mathcal{M}$ , there exist  $m \times m$ ,  $n \times n$  permutation matrices U, V, respectively, such that

$$T(PAQ) = UT(A)V$$

for some  $m \times m$ ,  $n \times n$  permutation matrices P and Q, resp..

*Proof.* Since T is bijective on the set of cells, there exists a bijective map f on indices set. Let  $T(E_{ij}) = E_{rs}$ . Then  $T(PE_{ij}Q) = T(E_{\sigma(i)\tau(j)})$ 

where  $\sigma, \tau$  are permutations with respect to P and Q, respectively. Since f is bijective on indices set,

$$f(\sigma(i), \tau(j)) = (\delta \sigma(i), \rho \tau(j))$$

for some permutations  $\delta$ ,  $\rho$ . Therefore, there exist  $m \times m$ ,  $n \times n$  permutation matrices U, V, resp., such that T(PAQ) = UT(A)V.

A matrix M in  $\mathcal{M}$  is a monomial if the pattern of M is a column permutation of  $[I_m; \mathbf{0}_{m,n-m}]$  where  $I_m$  is the  $m \times m$  dentity matrix and  $\mathbf{0}_{m,n-m}$  is the  $m \times (n-m)$  zero matrix. In particular, if m=n then  $\overline{M}$  is a permutation matrix. If  $L \leq M$  and M is a monomial, then we call L a submonomial matrix.

LEMMA 4. Let  $T(A^t) = T(A)^t$  for  $A \in \mathcal{M}_{2,2}(S)$ . There exists a monomial matrix  $M \in \mathcal{M}$  such that T(M) is a monomial.

*Proof.* Let A be a monomial matrix with t(T(A)) = k. If k = m, then the proof is completed.

Suppose that k < m. Then, there exists a submonomial matrix B such that  $B \le A$  and t(B) = t(T(B)) = k. Since B is a submonomial with t(B) = k and t(T(B)) = k, T(B) is a submonomial matrix. Since T(B) is a submonomial, there exist permutation matrices P, Q such that T(B) = PBQ. So, without loss of generality, let  $T(B) = B = I_k \oplus \mathbf{0}_{m-k,n-k}$  and  $P = I_k \oplus P'$ ,  $Q = I_k \oplus Q'$  where P' and Q' are  $(m-k) \times (m-k)$ ,  $(n-k) \times (n-k)$  permutation matrices, resp.. Since T(B) is a submonomial, there exists a submonomial matrix D such that t(D) = m - k and T(B) + D is a monomial matrix. Thus, T(B) + D = PAQ. That is,  $D = P(A \setminus B)Q$ . If T(D) is a submonomial matrix, then T(D) = PDQ and T(B+D) = P(B+D)Q is a monomial matrix. Thus, if T(D) is a submonomial matrix, we can construct a monomial matrix that whose image is a monomial matrix.

Now, suppose that T(D) is not submonomial for any  $1 \leq k < m$ . For k, we can choose the k = m - 2. Then

$$T(D) = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \oplus \mathbf{0}_{m-2,n-2}, \text{ or};$$
  
=  $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \oplus \mathbf{0}_{m-2,n-2}.$ 

Without loss of generality, we may assume that

$$T(D) = egin{bmatrix} 1 & 1 \ 0 & 0 \end{bmatrix} \oplus \mathbf{0}_{m-2,n-2} \ \ ext{and} \ \ D = I_2 \oplus \mathbf{0}_{m-2,n-2}$$

Then, we only consider the linear preserving operator T on  $\mathcal{M}_{2,2}(\mathcal{S})$ .

Since T is bijective on the set of cells, without loss of generality, let  $T(E_{11}) = E_{11}$ . Then  $T(E_{22}) = E_{12}$ . Also, we may assume that  $T(E_{21}) = E_{21}$ . Then  $T(E_{12}) = E_{22}$ . Since  $T(A^t) = T(A)^t$  for  $A \in \mathcal{M}_{2,2}(\mathcal{S})$ ,

$$T\left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}^{t}\right) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{t} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\neq \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = T\left(\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}\right) = T\left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}^{t}\right).$$

Therefore, there exists a monomial matrix  $M \in \mathcal{M}$  such that T(M) is a monomial matrix.

THEOREM 5. Let  $T(A^t) = T(A)^t$  for  $A \in \mathcal{M}_{2,2}(\mathcal{S})$  and T be a domination preserving operator on  $\mathcal{M}$ . Then T preserves term rank 1 and term rank 2.

*Proof.* First, we prove that T preserves term rank 1.

Suppose that T is not a term rank 1 preserver. Without loss of generality, let  $T(E_{pq}) = E_{ij}$  and  $T(E_{pv}) = E_{rs}$ ,  $i \neq r$ ,  $j \neq s$ . Then, there exists a matrix M such that |M| = m,  $E_{pq} + E_{pv} \leq M$  and T(M) is a monomial. That is,

$$T(E_{pq} + E_{pv}) = E_{ij} + E_{rs} \le T(M).$$

By Lemma 3 and Lemma 4, T preserves monomial matrices on  $\mathcal{M}$ . Thus, this is a contradiction and hence T preserves term rank 1.

Now, suppose that T is not a term rank 2 preserver. Then, there exist i, j, r, s such that

$$T(E_{ij} + E_{rs}) = E_{pq} + E_{pv}, i \neq r, j \neq s.$$

Since T preserves term rank 1, this is a contradiction. Therefore, T preserves term rank 1 and term rank 2.

An immediate consequence of the above Theorem 5 is the following:

## Gwang-Yeon Lee and Hang-Kyun Shin

THEOREM 6. If S is any semiring, then the following are equivalent for any linear operator T on M.

- (i) T is a (P, Q, B) operator.
- (ii) T preserves term rank.
- (iii) T preserves term rank 1 and term rank 2.
- (iv) T strongly preserves term rank 1.
- (v) T is nonsingular and preserves term rank 1 (when S is S a field).
- (vi) T is nonsigular and preserves domination with  $T(A^t) = T(A)^t$  for  $A \in \mathcal{M}_{2,2}(\mathcal{S})$ .

Since, by above Theorem A and Theorem 5, the Theorem 6 is obvious, we state it without proof.

ACKNOWLEDGEMENTS. Special thanks go to the referee for a thorough and careful reading of the original draft.

## References

- L. B. Beasley and N. J. Pullman, Term-Rank, Permanent and Rook-Polynomial Preservers, Linear Algebra Appl. 90 (1987), 33-46.
- 2. \_\_\_\_\_, Linear Operators That Preserve Term Rank 1, Proc. R. Ir. Acad. 91A,No.1 (1991), 71-78.
- L. B. Beasley, G. Y. Lee and S. G. Lee, Linear Transformation That Preserve The Assignment, Linear Algebra Appl. 212-213 (1994), 387-396.
- 4. \_\_\_\_\_, Linear Transformation That Preserve The Assignment II, to appear in J.K.M.S..
- L. B. Beasley and S. G. Lee, Linear Operators Preserving r-potent Matrices Over Semirings, Linear Algebra Appl. 164 (1992), 588-600.

Department of Mathematics, Hanseo University, Seosan 356-820, Korea

DEPARTMENT OF MATHEMATICS EDUCATION, WOOSUK UNIVERSITY, WANJU-GUN, CHONBOK 565-701, KOREA