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A NOTE - ON MEAN VALUE
PROPERTY AND MONOTONICITY

INDRAJIT LAHIRI

1. Introduction and Definitions

The notion of approximate derivative was introduced by Denjoy in
1916 [3]. Khintchine [5] proved that Rolle’s theorem holds for approx-
imate derivatives and Tolstoff [8] proved that every approximate de-
rivative is of Baire class 1 and has Darboux property. Goffman and
Neugebauer [4] proved the above results of Tolstoff [8] in a different
and simplified method. Also they [4] proved indirectly (via Darboux
property) that approximate derivatives possesss mean value property.
The theorems of Goffman and Neugebauer [4] can be stated as follows

THEOREM A. Assume that f :[0,1] — R has an approximate deriv-

ative f.  everywhere on [0,1]. Then f! posscsses Darboux property.
ap J ’ ap I p

THEOREM B. Let f:[0,1] — R have an approximate derivative fap

everywhere on [0,1]. Then Darboux property and mean value property
!

are equivalent for fj.,.

The purpose of this note is to prove the mean value theorem for ap-
proximate derivatives under weaker hypotheses in a direct and simpler
method. We also avoid Zorn’s lemma as was used by Goffman and
Neugebauer [4]. The key step of our proof is the use of a result on the
approximate extremum due to O’Malley [6]. As a second application of
this result of O’Malley we prove a theorem on monotonicity of functions
which improves a result of [4].
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When we call a set or a function to be measurable, we mean it is
so in Lebesgue sense. Since every approximately continuous function
on an interval is measurable {cf. p. 19[1]}, our purpose will be served
if throughout the note we consider only measurable functions f, ¢ etc.
defined on E = [0, 1]. Also for a set A we denote by (" A the complement
of A.

DEFINITION 1. {cf. [2]} The upper right approximate limit of f at
£, denoted by u™(f,£) or simply ut(£), is the infimum of the numbers
K for which the set E[f > K,z > £] has zero density at £.

DEFINITION 2. {cf. [2]} The lower right approximate limit of f at
£, denoted by ¢*(f,£) or simply ¢1(£), is the supremum of the numbers
K for which the set E[f < K,z > €] has zero densily at £.

The left approximate extreme limits are defined .ikewise.

DEFINITION 3. {cf. [2]} The upper right approximate limit of
-f(—xz:eﬂ at £ 1s called upper right approximate derivative of f at £ and
is denoted by 4, D7 f(£).

The other extreme derivatives are defined similarly and denoted by
ap D4 f(§): apD ™ f(£), ap D~ f(€). When all the four extreme derivatives
are equal at a point £, the common value f;p(f) is called the approxi-
mate derivative of f at £.

DEFINITION 4. {cf. [6]} The function f is said to have an approxi-
mate maximum at zo € E if E[f > f(z,)] has density zero at z,.

An approximate minimum is defined similarly.

2. Lemmas

In this section we present some lemmas which wili be required in the
next section.

LEMMA 1. ut({) = inf{ limsup f(x): A C E is measurable and
r—E+,7€A
d(A,€) = 1}.
Proof. Let UT(£) denote the right hand side. Now we consider the

following cases.
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Case I. —oo0 < U™ (£) < oc.

Let £(> 0) be arbitrary. Then there exists a measurable set 4 C E

with d(4,£) = 1 such that limsup f(z) < U%(§)+¢. So there exists
r—f+,2€A

a (> 0) such that f(x) < UH(€)+e forall z € AN(E,E+6). Therefore,

Alf >U(€) +e,2> € C CAN(E €+ 8)] N (€ o)
= [CAN (& 00)]UE+ 6 0).

Since

Bf > UH(E) +e,2 > €]
=Alf >UT() +e, « > JU{Ef > UHE) ~e,2 > €N CA)
C[CAN(§,0)]UCAUIE+ 6, 00)
= CAU[{+6,00), the density of E[f >U™(£)+e.z > €]
at € iszero. So uT(£) <UT(£)+¢ and hence
(1) ut(E) < UH ().

Let K be a real number such that E [f > A,z > €] has density zero
at {. Let F = C{E[f > K,z > £]} N E. Then d(F,¢) = 1 and for

allz € F, f(z) <K . SoUt(¢) < limsup f(z) < K and since K is
z—E+,z€F
arbitrary it follows that

(2) Ut (&) <u™(6).

In this case the result follows from (1) and (2) .
Case II. UH(£) = 400 .
If possible , let u™(£) < +o0c. Then there exists K < 400 suth that

E[f > K,z > ] has density zero at £&. Let F = C{E[f > K,z > £]}NE.

Then d(F,§) =1 and limsup f(z) < K sothat U*(¢) < K < +00. a
r—E+ el
contradiction. So ut(¢) = 4o00.

Case III. U*(£) = —cc.
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Then for arbitrary M(> 0) there exists a measurable set A C E

with d(A,¢) = 1 such that limsup f(z) < —M. So there exists
z—€+, €A
a §(> 0) such that f(z) < —M for all z € AN (£,€+ 6). Since

Alf > M,z > €] C[CAN(£,00)] U [€ + 6,00), it follows that E[f >
—M,z > C CAUIE + 6,00) so that the density of E[f > —M,z > €]
at £ is zero. Therefore, ut(£) < —M which implies u™(¢) = —oo.

From the above analysis the following cases are clear.

Case IV. If u™(£) = oo then UT(£) = <.

Case V. If ut(£) = —oc then UT(£) = —o0.

Case VI. If —00 < ut(£) < oo then —oo < UT(€) < oc. and

ut (&) =U*(&).

This proves the lemma.

LEMMA 2. ¢H(¢&) = sup{rgrerii‘rxlgll f(z) : A C F is measurable and
d(A, &) = 1}. The proof is omitted.

REMARK 1. Similar results are true for left hand extreme approxi-
mate limits.

LEMMA 3. {cf. Remark 2 [6]}. If f is approximately continuous and
not monotone on [a,b] C E then there exists zg,a < x¢ < b, at which
f has an approximate maximum or minimum.

3. Theorems

THEOREM 1. Let f be approximately continuous on E and ,,D% f
= apD " f,apDyf = opD_f at every point of E. Then for each pair
of points o, 8 with 0 < o« < 3 <1 there exists a point 7, a < 7 <

B, such that f,.(v)= ___________f(ﬁﬁ)’:i(a).

Proof. Let ¢(z) = f(z) — fla) — g=a{f(B) — f(a)}. Then ¢ is
approximately continuous on E and ¢(«a) = ¢(3) = 0. If ¢ is monotone
on [a, ] then ¢ = 0 on [a, 3] and so ¢, exists everywhere in (a, )
and the theorem follows easily. So we suppose that ¢ is not monotone
on [a, 3]. Then by Lemma 3 there exist a point v, « < v < 3, at which
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¢ has an approximate maximum or minimum. We suppose that ¢ has
an approximate maximum at v because the other case is similar.

Since ¢ has an approximate maximum at v. the set 4 = Elp <
#(7)] has density 1 at v. Then limsup ﬂﬂ———z < 0 and so by
T+, 26 A
Lemma 1 ,,D%¢(7) < 0. Also we see that liminf 1'#)—(5;-—:@ > 0 so
Ir—y ~,r€’ o
that .pD76(7) > 4pD-¢(7) > 0. Since ,D¥ ¢ = o, DF f — LI=Sle)

etc., it follows from above and th( given condition that ,, D o(y) =
apD+¢(7 = apD79(7) = opD_d(v) = 0 so that ¢/, »l ’) exists and
?'ap(v) = 0 from which the theor( 'm follows . This proves the theorem.

REMARK 2. Under the assumptions of Theorem 1 approximate de-
rivative of f exists on an everywhere dense subset of E.

REMARK 3. If we choose f(a) = f(8), a generalization of Rolle’s
theorem follows from Theorem 1.

THEOREM 2. If f is approximately continuous and o, D™ f > 0, ., DT f
>0 on E, then f is monotone increasing and so continuous on E.

Proof. First we suppose that ,,D~f > 0 and ,,D7f > 0 on E.
If possible suppose that f is not monotone on IZ. Then by Lemma 3
there exists £,0 < £ < 1, such that f has an approximate maximum or
minimum at £.

If f has an approximate maximum at £, the sex A = E[f < f(£)] has
unit density at £ and if f has an approximate minimum at £ , the set
B = E[f > f(£)] has unit density at £ .

Since limsup % <0and limsup &%EJ < 0. by Lemma,
r—E+.r€A r—f— 2R

1 and Remark 1 either o, D* f(£) < Oor 4, D~ f(£) < 0, a contradiction.
So f is monotone on E. If f is monotone decreasirg on E then ,, DV f <
Dt f <0 {cf. p. 219 [7]} which is again a contradiction. Therefore, f

1s monotone increasing on E.

Now we suppose that ,,D"f > 0 and 4, D~ f > 0 and we choose
w(z) = f(z) + ex , where (> 0) is arbitrary. Then o, Dy > 0 and
apD 7Y > 0 on E so that 1 is monotone increasing on E. Since (> 0) is
arbitrary, f is also monotone increasing on E. This proves the theorem.
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