LINEAR TRANSFORMATIONS THAT PRESERVE THE ASSIGNMENT ON $R = E_m$ AND $S = (s_1, \dots, s_n)$

GWANG-YEON LEE

1. Introduction

For positive integral vectors $R = (r_1, \dots, r_m)$ and $S = (s_1, \dots, s_n)$, we consider the class $\mathcal{U}(R, S)$ of all $m \times n$ matrices of 0's and 1's with the row sum vector R and the column sum vector S. Throughout the paper we assume that $\mathcal{U}(R, S) \neq \emptyset$. If $\sum_{i=1}^m r_i \neq \sum_{j=1}^n s_j$, then $\mathcal{U}(R, S) = \emptyset$. So we assume throughout that $\sum_{i=1}^m r_i = \sum_{j=1}^n s_j$ and $0 < r_i, s_j \leq n$ for each i, j where $n \leq m$. We refer to matrices in $\mathcal{U}(R, S)$ as (R, S)-assignments, or as assignments when R and S are fixed in the discussion.

Let $\overline{\mathcal{U}(R,S)}$ denote the convex hull of the (R,S)-assignment $\mathcal{U}(R,S)$ considered as points in real mn-dimensional space. Since each assignment has all entries equal to 0 or 1(hence is a vector of the mn-dimensional unit cube), it follows readily that the assignments are precisely the vertices(extreme points) of $\overline{\mathcal{U}(R,S)}$. Brualdi, Hartfiel and Hwang [5] proved that $\overline{\mathcal{U}(R,S)}$ is a convex polytope.

Once again let $R = (r_1, \dots, r_m)$ and $S = (s_1, \dots, s_n)$ be positive integral vectors for which $\mathcal{U}(R, S) \neq \emptyset$. Let $X = [x_{ij}]$ be an $m \times n$ matrix. We define the support of X to be the set $\mathrm{supp}(X) = \{(i, j) : x_{ij} \neq 0\}$. The (R, S)-assignment function, or an assignment function, $P_{R,S}(\cdot)$ is now defined by

(1.1)
$$P_{R,S}(X) = \sum_{A \in \mathcal{U}(R,S)} \prod_{(i,j) \in \text{supp}(A)} x_{ij}.$$

Received July 18, 1995. Revised November 23, 1995.

¹⁹⁹¹ AMS Subject Classification: 05C50, 15A04.

Key words and phrases: assignment function, linear preserver, bipartite graph. This paper was supported in part by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1994.

A well-known case of an assignment function occurs when m=n and $R=S=(1,\cdots,1)$. In this case, $P_{R,S}(X)$ counts the number of permutation matrices P with $P\leq X$ and hence $P_{R,S}(X)$ is the permanent of X, $\operatorname{per}(X)$.

In [6], Marcus and May characterized the permanent preservers and P. Botta [4] used another method for the characterization of the linear transformation that preserves the permanent. Marcus, Minc and Moyls [7] characterized the permanent preservers on the space of doubly stochastic matrices. In [1,2], the author characterized the nature of all linear transformations T on M_n into itself such that $P_{R,S}(T(X)) = P_{R,S}(X)$ for all $X \in M_n$. For such an assignment preserver T, there exist permutation matrices P, Q and diagonal matrices $D = \text{diag}\{d_1, \dots, d_n\}$, $L = \text{diag}\{l_1, \dots, l_n\}$ in M_n such that $\prod_{i=1}^n d_i^{r_i} \cdot \prod_{j=1}^n l_j^{s_j} = 1$ and either T(X) = PDXLQ for all $X \in M_n$ or $T(X) = PDX^TLQ$ and R = S for all $X \in M_n$.

A nonnegative real matrix is called doubly stochastic if all its row sums and column sums equal to 1. The set of all $n \times n$ doubly stochastic matrices is denoted by Ω_n . A vector E_m denote the m-tuple of 1's, i.e., $E_m = (1, \dots, 1)$. Let $R = E_m$ and $S = (s_1, \dots, s_n)$ where s_i , $i = 1, \dots, n$, are positive integers with $s_1 + \dots + s_n = m$. Then $\overline{\mathcal{U}(R, S)}$ is a generalization of Ω_n and $P_{R,S}(\cdot)$ is a generalized function of permanent. In the present paper we consider those linear mappings that preserve the assignment functions of $\overline{\mathcal{U}(R, S)}$. By an assignment preserver on $\overline{\mathcal{U}(R, S)}$ we mean a mapping T on $\overline{\mathcal{U}(R, S)}$ into itself such that, for $A, B \in \overline{\mathcal{U}(R, S)}$ and for real numbers $\alpha, \beta, 0 \le \alpha \le 1, 0 \le \beta \le 1, \alpha + \beta = 1,$

(1.2)
$$T(\alpha A + \beta B) = \alpha T(A) + \beta T(B),$$

(1.3)
$$P_{R,S}(T(A)) = P_{R,S}(A).$$

We shall show that for such T there exist fixed permutation matrices P, Q such that either

$$T(A) = PAQ$$
 for all $A \in \overline{\mathcal{U}(R,S)}$

or

$$R = S$$
, $T(A) = PA^{T}Q$ for all $A \in \overline{\mathcal{U}(R,S)}$ and $SQ = S$.

2. Results

Let $R = E_m$ and $S = (s_1, \dots, s_n)$ where s_i , $i = 1, \dots, n$, are positive integers with $s_1 + \dots + s_n = m$. We consider those linear mappings which preserve the assignment functions of $\overline{\mathcal{U}(R, S)}$.

The following lemma will be useful for our study.

LEMMA 1. Let $R = (r_1, \dots, r_m)$ and $S = (s_1, \dots, s_n)$ be vectors of positive integers with $\sum_{i=1}^m r_i = \sum_{j=1}^n s_j$. Let P and Q are permutation matrices. Then

$$(2.1) P_{R,S}(X) = P_{R,S}(PXQ)$$

if and only if $PR^T = R^T$ and SQ = S.

Proof. For each $A \in \mathcal{U}(R, S)$, $PAQ \in \mathcal{U}(R, S)$ only if $PR^t = R^t$ and SQ = S. This establishes the necessity. Now, suppose that $PR^t = R^t$ and SQ = S. Then,

$$\begin{split} \mathbf{P}_{R,S}(X) &= \sum_{A \in \mathcal{U}(R,S)} \prod_{(i,j) \in \operatorname{supp}(A)} x_{ij} \\ &= \sum_{PAQ \in \mathcal{U}(R,S)} \prod_{(i,j) \in \operatorname{supp}(PAQ)} x_{ij} \\ &= \sum_{A \in \mathcal{U}(R,S)} \prod_{(i,j) \in \operatorname{supp}(A)} (PXQ)_{ij} \\ &= \mathbf{P}_{R,S}(PXQ). \quad \Box \end{split}$$

REMARK. We note that the assignment is not invariant under permutations of rows or columns, and is not invariant under transposition. For example, if R=(2,2,2) and S=(3,2,1), then $\mathcal{U}(R,S)=\{A_1,A_2,A_3\}$ where

$$A_1 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \ A_2 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \ A_3 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Then $P_{R,S}(A_1) = 1$. But $P_{R,S}(A_1^T) = 0$. And let

$$Q = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix},$$

then

$$A_1Q = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

So, $P_{R,S}(A_1) = 1$ and $P_{R,S}(A_1Q) = 0$.

Note that if R = S then $\mathcal{U}(R, S) = \mathcal{U}(S, R) = \mathcal{U}(R, R)$ and hence, in this case, $P_{R,S}(A) = P_{R,S}(A^T)$ for all A. We have thus established the following lemma.

LEMMA 2. The transpose operator preserves the assignment function $P_{R,S}$ if and only if R = S.

Let $R = E_m$ and let $S = (s_1, \dots, s_n)$ where s_i , $i = 1, \dots, n$, are positive integers with $s_1 + \dots + s_n = m$. Let T be a mapping on $\overline{\mathcal{U}(R, S)}$ into itself satisfying (1.2) and (1.3). In [5, Theorem 4.5], it was shown that for $A \in \overline{\mathcal{U}(R, S)}$, $P_{R,S}(A) = 1$ if and only if A is an assignment. It follows that T maps $\mathcal{U}(R, S)$ into itself.

Once again let $R = E_m$ and let $S = (s_1, \dots, s_n)$ where s_i , $i = 1, \dots, n$, are positive integers with $s_1 + \dots + s_n = m$. And, define the mapping φ on $\overline{\mathcal{U}(R, S)}$ by

where Π is a permutation matrix of order m and Σ is a permutation matrix of order n such that $S\Sigma = S$. Then φ has properties (1.2), (1.3) and $\varphi(A) = \Pi T(A)\Sigma$ for $A \in \mathcal{U}(R,S)$. Suppose that $X \in \overline{\mathcal{U}(R,S)}$. Since X is in the convex hull, $X = \sum_{i=1}^k \lambda_i A_i$, $A_i \in \mathcal{U}(R,S)$, $0 \le \lambda_i \le 1$, $i = 1, \dots, k$ and $\sum_{i=1}^k \lambda_i = 1$ and hence $\varphi(X) = \sum_{i=1}^k \lambda_i \varphi(A_i)$. Since $\varphi(A) = \Pi T(A)\Sigma \in \mathcal{U}(R,S)$ for $A \in \mathcal{U}(R,S)$, it is sufficient to discuss the action of φ on (R,S)-assignments.

Let $\mathcal{B}(V_1, V_2)$ be the set of all bipartite graphs with vertex sets V_1 and V_2 where $|V_1| = m$, $|V_2| = n$. Let G_{ij} be an element of $\mathcal{B}(V_1, V_2)$ whose edge is the only one such that $e_{ij} = \{i, j\}$ for $i \in V_1$, and $j \in V_2$. The mapping L is called a linear mapping of $\mathcal{B}(V_1, V_2)$ into itself if $L(G_1 \cup G_2) = L(G_1) \cup L(G_2)$ for each $G_1, G_2 \in \mathcal{B}(V_1, V_2)$. Define the set $\mathcal{G}_{m,n}$ by

$$\mathcal{G}_{m,n} = \{ G(V_1, V_2) \in \mathcal{B}(V_1, V_2) : \deg(i) = 1 \text{ for all } i \in V_1$$
(2.3) and $\deg(j) = s_j \text{ for each } j \in V_2 \}.$

Then the degree sequence of V_1 is E_m and the degree sequence of V_2 is (s_1, \dots, s_n) such that $\sum_{j=1}^n s_j = m$.

LEMMA 3. If ϑ maps on $\mathcal{U}(R,S)$ into itself such that, for $B \in \mathcal{U}(R,S)$, $\vartheta(B) = C$ for some $C \in \mathcal{U}(R,S)$, then $\vartheta(A) = PAQ$ for $A \in \mathcal{U}(R,S)$ where P is a permutation matrix of order m and Q is a permutation matrix of order n such that SQ = S.

Proof. For any $G, H \in \mathcal{G}_{m,n}$ there exists a graph isomorphism L. A graph isomorphism of a simple graph is a permutation which preserves the adjacency of each vertex.

Let the degree sequence of V_2 is $S=(s_1, \dots, s_n)$ and it is fixed, without loss of generality, we may assume that its permutation is the identity. Now, let L_1 be a graph isomorphism with a permutation σ which preserves the degree of V_1 . For any subgraph G_{ij} of G, since $L_1(G_{ij})=G_{\sigma(i)j}$ where σ is in the symmetric group S_m , $L_1(G_{ij}\cup G_{pq})=G_{\sigma(i)j}\cup G_{\sigma(p)q}=L_1(G_{ij})\cup L_1(G_{pq})$, for $i,p\in V_1$, and $j,q\in V_2$. For $G\in \mathcal{G}_{m,n}, G=\bigcup_{i=1}^m G_{ij},\ j=1,\cdots,n$,

$$egin{aligned} L_1(G) &= L_1(igcup_{i=1}^m G_{ij}) = igcup_{i=1}^m L_1(G_{ij}) \ &= igcup_{i=1}^m G_{\sigma(i)j}, \ \ \sigma \in \mathcal{S}_m. \end{aligned}$$

Since $L_1(G \cup H) = L_1(G) \cup L_1(H)$ for $G, H \in \mathcal{G}_{m,n}$, L_1 is a linear mapping.

Let A(G) be the adjacency matrix of a graph G. Define $\psi : \mathcal{G}_{m,n} \to \mathcal{U}(R,S)$ by $\psi(G) = A(G)$. Then ψ is a bijection. Let P be the permutation matrix with respect to $\sigma \in \mathcal{S}_m$. Then $\psi \circ L_1 \circ \psi^{-1}$ maps on $\mathcal{U}(R,S)$ into itself.

Now, without loss of generality, we may assume that its permutation matrix P is the identity since the degree sequence of V_1 is $R = E_m$. Let L_2 be a graph isomorphism with a permutation τ which preserves the degree of V_2 . That is $L_2(G_{ij}) = G_{i\tau(j)}$ for some τ in the symmetric group S_n . Then L_2 , which is similar to L_1 , is a linear mapping. Let Q be a permutation matrix with respect to $\tau \in S_n$. Since s_1, \dots, s_n are arbitrary positive integers such that $s_1 + \dots + s_n = m$, the permutation matrix Q satisfy SQ = S. Then $\psi \circ L_2 \circ \psi^{-1}$ maps on $\mathcal{U}(R, S)$ into itself.

Since ψ is a bijection, for $G \in \mathcal{G}_{m,n}$, there exists $B \in \mathcal{U}(R,S)$ such that $\psi(G) = A(G) = B$. Let $L = L_1 \circ L_2$. Then L is a linear mapping of $\mathcal{G}_{m,n}$ into itself. Let $\vartheta = \psi \circ L \circ \psi^{-1}$. Then ϑ maps on $\mathcal{U}(R,S)$ into itself and, for any $B \in \mathcal{U}(R,S)$,

$$\begin{split} \vartheta(B) &= (\psi \circ L \circ \psi^{-1})(B) = \psi(L(\psi^{-1}(B))) \\ &= \psi(L(G)) = A(L(G)) = PA(G)Q = PBQ, \end{split}$$

where P and Q are permutation matrices of order m and n, respectively.

For any $X \in \overline{\mathcal{U}(R,S)}$, $X = \sum_{i=1}^k \lambda_i A_i$, for some $A_i \in \mathcal{U}(R,S)$, $0 \le \lambda_i \le 1$, $i = 1, \dots, k$ and $\sum_{i=1}^k \lambda_i = 1$. Since φ is a mapping of $\mathcal{U}(R,S)$ into itself, for permutation matrices P and Q,

$$T(X) = \Pi^{T} \varphi(X) \Sigma^{T}$$

$$= \Pi^{T} \sum_{i=1}^{k} \lambda_{i} \varphi(A_{i}) \Sigma^{T}$$

$$= \Pi^{T} \sum_{i=1}^{k} \lambda_{i} P A_{i} Q \Sigma^{T}$$

$$= \Pi^{T} P X Q \Sigma^{T}.$$

Now, we have immediately our results:

THEOREM 4. Let $R = E_m$ and let $S = (s_1, \dots, s_n)$ where the s_i 's are positive integers with $s_1 + \cdots + s_n = m$. Let T be a linear mapping of $\mathcal{U}(R,S)$ into itself such that $P_{R,S}(T(X)) = P_{R,S}(X)$ for all $X \in$ $\overline{\mathcal{U}(R,S)}$. Then there exist permutation matrices P and Q such that either

$$(2.4) \hspace{1cm} T(X) = PXQ \hspace{0.2cm} \text{for all} \hspace{0.2cm} X \in \overline{\mathcal{U}(R,S)}$$
 or

(2.5) R = S. $T(X) = PX^TQ$ for all $X \in \overline{\mathcal{U}(R,S)}$ and SQ = S, where the permutation matrix Q satisfy SQ = S.

Proof. For any $X \in \overline{\mathcal{U}(R,S)}$, $X = \sum_{i=1}^{k} \lambda_i A_i$, for some $A_i \in \mathcal{U}(R,S)$, $0 \le \lambda_i \le 1, i = 1, \dots, k$ and $\sum_{i=1}^k \lambda_i = 1$. Since φ is a mapping of $\mathcal{U}(R,S)$ into itself, for permutation matrices P and Q,

$$T(X) = \Pi^{T} \varphi(X) \Sigma^{T}$$

$$= \Pi^{T} \sum_{i=1}^{k} \lambda_{i} \varphi(A_{i}) \Sigma^{T}$$

$$= \Pi^{T} \sum_{i=1}^{k} \lambda_{i} P A_{i} Q \Sigma^{T}$$

$$= \Pi^{T} P X Q \Sigma^{T}.$$

COROLLARY 5. Let $R = S = E_n$. Let T be a linear mapping of $\overline{\mathcal{U}(R,S)}$ into itself such that $P_{R,S}(T(X)) = P_{R,S}(X)$ for all $X \in$ $\overline{\mathcal{U}(R,S)}$. Then there exist permutation matrices P and Q such that either

(2.6)
$$T(X) = PXQ \text{ for all } X \in \overline{\mathcal{U}(R,S)}$$
or
(2.7)
$$T(X) = PX^{T}Q \text{ for all } X \in \overline{\mathcal{U}(R,S)}.$$

(2.7)

Proof. If $R = S = E_n$, then $\overline{\mathcal{U}(R,S)}$ is the space of doubly stochastic matrices and $P_{R,S}(X) = \text{per}X$.

ACKNOWLEDGEMENTS. The author would like to thank the anonymous referee for a through and careful reading of the original draft.

Gwang-Yeon Lee

References

- L. B. Beasley, G. Y. Lee and S. G. Lee, Linear Transformation that Preserve the Assignment, Linear Algebra Appl. 212-213 (1994), 387-396.
- 2. _____, Linear Transformation that Preserve the Assignment II, submitted J. K. M. S.
- 3. L. B. Beasley and S. G. Lee, Linear Operators Strongly Preserving r-cyclic Matrices over Semirings, Lin. Multilin. Alg. 35 (1993), 325-338.
- 4. P. Botta, Linear Transformations that Preserve the Permanent, Proc. Am. Math. Soc. 18 (1967), 566-569.
- R. A. Brualdi, D. J. Hartfiel and S. G. Hwang, On Assignment Functions, Lin. Multilin. Alg. 19 (1986), 203-219.
- M. Marcus and F. May, The Permanent Function, Can. J. Math. 14 (1962), 177-189.
- M. Marcus, H. Minc and B. N. Moyls, Permanent Preservers on the Space of Doubly Stochastic Matrices, Can. J. Math. 14 (1962), 190-194.

DEPARTMENT OF MATHEMATICS, HANSEO UNIVERSITY, SEOSAN 356-820, KOREA