THE IMAGE OF A CONTINUOUS STRONG HIGHER DERIVATION IS CONTAINED IN THE RADICAL

KIL-WOUNG JUN* AND YOUNG-WHAN LEE

Let A be a Banach algebra over the complex field. A linear map $D:A\to A$ is a derivation if D(xy)=xD(y)+D(x)y for all $x,y\in A$. A sequence $\{H_0,\ H_1,\ \cdots,\ H_m\}$ (resp. $\{H_0,H_1,\cdots\}$) of linear operators on A is a higher derivation of rank m (resp. infinitely rank) if for each $n=0,\ 1,\ 2,\cdots,\ m$ (resp. $n=0,1,2,\cdots$) and any $x,\ y\in A$,

$$H_n(xy) = \sum_{i=0}^n H_i(x) H_{n-i}(y)$$

These equations are called the Leibnitz identities. A higher derivation $\{H_n\}$ of rank m is strong if H_0 is an identity operator, and continuous if H_n is continuous for each $n=1, 2, \cdots, m$. Note that a strong higher derivation of rank 1 is a derivation. For definitions and elementary properties of Banach algebras we refer to [1]. We denote by rad(A) the radical of a Banach algebra A. A strong higher derivation $\{H_n\}$ of rank m on a Banach algebra A maps into its radical if $H_i(A) \subseteq rad(A)$ for $1 \le i \le m$.

I. M. Singer and J. Wermer [5] proved that every continuous derivation on a commutative Banach algebra A maps into its radical. They conjectured that the assumption of continuity is unnecessary. This became known as the Singer-Wermer Conjecture and was proved in 1987 by M.P.Thomas [6]. Thus we see that for every commutative, semi-simple Banach algebra A, there are no nonzero derivations $D: A \to A$. This fact sometimes be used to show that a certain algebra cannot be given a norm which makes it a Banach algebra: See [1,18.22]. F.

Received November 5, 1994. Revised April 15, 1995.

¹⁹⁹¹ AMS Subject Classification: 46H99.

Key words and phrases: higher derivation, derivation, Banach algebra.

^{*} This paper was supported in part by Non Directed Research Fund, Korea Research Foundation, 1994.

Gulick [2], N. P. Jewell [3], and R. J. Roy [4] have shown that the automatic continuity of derivations on semi-simple Banach algebras can be extended to higher derivations.

In this paper, we show that every continuous strong higher derivation, as well as every derivation, on a commutative Banach algebra maps into its radical.

THEOREM 1. Every continuous strong higher derivation of any rank on a commutative Banach algebra maps into its radical

In order to prove Theorem 1 we need the following lemma.

LEMMA 1. If a sequence $\{H_n\}$ is a strong higher derivation of rank m on a Banach algebra A, then for each $1 < k \le m, 1 \le n$ and $x_1, x_2, \dots, x_n, x \in A$

$$(1) H_k(x_1x_2\cdots x_n) = \sum_{\substack{a_1+a_2+\cdots+a_n=k\\0\leq a_i}} H_{a_1}(x_1)H_{a_2}(x_2)\cdots H_{a_n}(x_n)$$

$$\begin{split} H^n_k(x^n) &= \sum_{\substack{a_{1,1}+a_{1,2}+\cdots+a_{1,n}=k\\a_{2,1}+a_{2,2}+\cdots+a_{2,n}=k\\\cdots\\a_{n,1}+a_{n,2}+\cdots+a_{n,n}=k\\0\leq a_{i,j}} H_{a_{n,1}}(H_{a_{n-1,1}}(\cdots(H_{a_{2,1}}(H_{a_{1,1}}(x)))\cdots))\\ &\cdot H_{a_{n,2}}(H_{a_{n-1,2}}(\cdots(H_{a_{2,2}}(H_{a_{1,2}}(x)))\cdots))\\ &\cdots H_{a_{n,n}}(H_{a_{n-1,n}}(\cdots(H_{a_{2,n}}(H_{a_{1,n}}(x)))\cdots)). \end{split}$$

Proof. By definition, for each n > 0

$$H_k(x_1x_2\cdots x_n) = \sum_{i_1=0}^k H_{i_1}(x_1)H_{k-i_1}(x_2x_3\cdots x_n).$$

If n > 2, we substitute $H_{k-i_1}(x_2x_3\cdots x_n)$ in the recursion formula. This procedure give us the sum

$$H_{k}(x_{1}x_{2}\cdots x_{n}) = \sum_{i_{1}=0}^{k} \sum_{i_{2}=0}^{k-i_{1}} \sum_{i_{3}=0}^{k-i_{1}-i_{2}} \cdots \sum_{i_{n-1}=0}^{k-i_{1}-i_{2}-\cdots-i_{n-2}} H_{i_{1}}(x_{1})H_{i_{2}}(x_{2})\cdots H_{k-i_{1}-i_{2}-\cdots-i_{n-1}}(x_{n}).$$

Thus for each $1 < k \le m$ and $x_1, x_2, \dots, x_n \in A$

$$H_k(x_1x_2\cdots x_n) = \sum_{\substack{a_1+a_2+\cdots +a_n=k\\0\leq a_i}} H_{a_1}(x_1)H_{a_2}(x_2)\cdots H_{a_n}(x_n).$$

Also we have

$$\begin{split} H_k^2(x^n) &= \sum_{\substack{a_1 + a_2 + \dots + a_n = k \\ 0 \leq a_i}} H_k(H_{a_1}(x) H_{a_2}(x) \cdots H_{a_n}(x)) \\ &= \sum_{\substack{a_1 + a_2 + \dots + a_n = k \\ b_1 + b_2 + \dots + b_n = k \\ 0 \leq a_i}} H_{b_1}(H_{a_1}(x)) H_{b_2}(H_{a_2}(x)) \cdots H_{b_n}(H_{a_n}(x)). \end{split}$$

By the recursion formula, we obtain the equation (2).

Proof of Theorem 1. Let $\{H_n\}$ be a continuous strong higher derivation of rank m on a commutative Banach algebra A. By Singer-Wermer's theorem, $H_1(A) \subseteq rad(A)$.

It suffices to prove the case k=2. Let P be a primitive ideal of $A, y \in A$ and $x \in P$. Then

$$yH_2(x) = H_2(yx) - H_2(y)x - H_1(y)H_1(x) \in H_2(P) + P.$$

This shows that $(H_2(P) + P)/P$ is a left ideal of A/P. A similar argument shows that it is a right ideal and we conclude that $(H_2(P) + P)/P$ is an ideal of A/P. For n > 2 and $0 \le a_{i,j}$ $(i, j = 1, 2, \dots, n)$, let

$$a_{1,1} + a_{1,2} + \dots + a_{1,n} = 2,$$

 $a_{2,1} + a_{2,2} + \dots + a_{2,n} = 2,$
 \dots
 $a_{n,1} + a_{n,2} + \dots + a_{n,n} = 2.$

If $a_{i,j} = 1$ for some $i, j = 1, 2, \dots, n$, then for all n > 2

$$(*) \qquad H_{a_{n,1}}(H_{a_{n-1,1}}(\cdots(H_{a_{2,1}}(H_{a_{1,1}}(x)))\cdots)) \\ \cdot H_{a_{n,2}}(H_{a_{n-1,2}}(\cdots(H_{a_{2,2}}(H_{a_{1,2}}(x)))\cdots)) \\ \cdot \cdots \cdot H_{a_{n,n}}(H_{a_{n-1,n}}(\cdots(H_{a_{2,n}}(H_{a_{1,n}}(x)))\cdots))$$

is an element of P. If $a_{i,j} \neq 1$ for all $i, j = 1, 2, \dots, n$, then for all n > 2

$$(*) = (H_2(x))^n.$$

Thus we have

$$H_2^n(x^n) \in n!(H_2(x))^n + P$$

for all n > 2. Then

$$(n!)^{\frac{1}{n}}||(Q_PH_2(x))^n||^{\frac{1}{n}} = ||Q_PH_2^n(x^n)||^{\frac{1}{n}} \le ||H_2||||x^n||^{\frac{1}{n}},$$

where $Q_P: A \to A/P$ is a natural quotient map. Since $||H_2|| ||x^n||^{\frac{1}{n}}$ is bounded and $(n!)^{\frac{1}{n}} \to \infty$, this shows that $Q_P H_2(x)$ is quasi-nilpotent. Since x was an arbitrary element of P and A/P is semisimple,

$$(H_2(P) + P)/P \subseteq rad(A/P) = 0.$$

Thus $H_2(P) \subseteq P$, and so $H_2(A) \subseteq rad(A)$. The proof of the theorem is complete.

References

- F. Bonsall and J. Duncan, Complete Normed Algebras, (Springer-Verag, Berlin, 1973).
- 2. F. Gulick, Systems of derivations, Trans. Amer. Math. Soc. 149 (1970), 465-488.
- 3. N. P. Jewell, Continuity of Module and Higher Derivations, 68 (1977), 91-98.
- R. J. Loy, Continuity of Higher Derivations, Proc. Amer. Math. Soc. 37 (1973), 505-510.
- I. M. Singer and J. Wermer, Derivations on Commutative Normed Algebras, Math. Ann. 129 (1955), 260-264.
- M. P. Thomas, The Image of a Derivation is contained in the Radical, Ann. of Math. 128 (1988), 435-460.

KIL-WOUNG JUN

DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, TAEJON 300-764, KOREA

Young-Whan Lee

DEPARTMENT OF MATHEMATICS, TAEJON UNIVERSITY, TAEJON 300-716, KO REA.