THE AVERAGING THEOREM OF LEFSCHETZ COINCIDENCE NUMBERS AND ESTIMATION OF NIELSEN COINCIDENCE NUMBERS

CHAN GYU JANG

1. Coincidence Numbers

Throughout this paper, we will work in the category of compact connected manifolds and continuous maps. If X_1, X_2 are manifolds, $f, g \colon X_1 \to X_2$ are maps, then a point $x \in X_1$ is a coincidence of f and g iff f(x) = g(x); the set of all such points is denoted by Coin(f,g). If $x, y \in Coin(f,g)$, they are f, g-equivalence iff there exists a path ω in X from x to y with $f \circ \omega \simeq g \circ \omega$ (rel 0,1). The f, g-equivalent is an eqivalence relation on Coin(f,g) and a class by f, g-equivalent is called a coincidence class of f and g.

Suppose X_1, X_2 are both orientable n-manifolds. For each coincidence class C of f and g, a coincidence index Ind(f,g,C) is defined. If W,V are neighborhood of C with $C \subset W \subset \overline{W} \subset V$ and $Coin(f,g) \cap V = C$, then let (f,g) be the composition

$$\begin{array}{ccc} H_n(X_1) & \xrightarrow{} & H_n(X_1, X_1 \setminus W) & \leftarrow & \stackrel{\cong}{-} & H_n(V, V \setminus W) \\ & \xrightarrow{(f_{\star}, g_{\star})} & H_n(X_2 \times X_2, X_2 \times X_2 \setminus \Delta(X_2)). \end{array}$$

If $z_1 \in H_n(X_1)$ is the fundamental class of X_1 and $U_2 \in H^n(X_2 \times X_2, X_2 \times X_2 \setminus \Delta(X_2))$ is the Thom class of X_2 , then $Ind(f, g, C) = \langle U_2, (f, g).(z_1) \rangle$. This is independent of V and W, and has the following properties:

(1) Coincidence: if $Ind(f, g, C) \neq 0$, then $C \neq \phi$

Received November 4, 1994.

1991 AMS Subject Classification: Primary 55M20; Secondary 54H25.

Key words: Lefschetz numbers, Nielsen numbers, Reidmeister numbers.

- (2) Homotopy: if $F: f_0 \simeq f_1$, $G: g_0 \simeq g_1$ and there exists a V such that $V \cap Coin(F,G)$ is compact, then $C_0 = V \cap Coin(f_0,g_0)$ and $C_1 = V \cap Coin(f_1,g_1)$ have $Ind(f_0,g_0,C_0) = Ind(f_1,g_1,C_1)$.
- (3) Additivity: if $C = \bigcup C_i$, then $Ind(f, g, C) = \sum Ind(f, g, C_i)$.
- (4) Products: Given $f, g: X_1 \to X_2$ and $f', g': X_1', \to X_2'$ and $C \subseteq Coin(f,g), C' \subseteq Coin(f',g')$, then Ind(f,g,C) and Ind(f',g',C') are defined iff $Ind(f \times f', g \times g', C \times C')$ is defined. If all are defined, $Ind(f \times f', g \times g', C \times C') = Ind(f,g,C) \cdot Ind(f',g',C')$.

A coincidence class C is essential if $Ind(f, g, C) \neq 0$. The Nielsen coincidence number N(f, g) is the number of essential classes of f and g.

In rational coefficients, let $D_1: H^p(X_1) \to H_{n-p}(X_1)$ be the duality isomorphism and $\theta_p(f,g)$ be the composition

The Lefschetz coincidence number L(f,g) is defined as $\sum_{p=0}^{n} (-1)^{p} tr(\theta_{p}(f,g))$, and the Lefschetz coincidence theorem states that L(f,g) = Ind(f,g).

2. The Averaging Theorem of Lefschetz Coincidence Numbers and Estimation of Nielsen Coincidence numbers

Given $f,g\colon X_1\to X_2$, fix base points $x_1\in X_1,\,x_2\in X_2$, and for convenience assume that $f(x_1)=x_2=g(x_1)$. Let π_i denote $\pi(X_i,x_i)$ and define $\mathfrak{F}(\pi_i)=\{\Gamma\triangleleft\pi_i|[\pi_i\colon\Gamma]<\infty\}$. There is a one-to-one correspondence between elements of $\mathfrak{F}(\pi_i)$ and finite regular covers of X_i . If X_i is orientable, then the orientable finite regular covers of X_i corresponds to $\mathfrak{F}(\pi_i)$. Fix $\Gamma_2\in\mathfrak{F}(\pi_2)$ and corresponding finite regular cover $p_2\colon \tilde{X}_2\to X_2$. Given a cover $p_1\colon \tilde{X}_1\to X_1$ and corresponding $\Gamma_1\in\mathfrak{F}(\pi_1),\,f$ and g lift to some $\tilde{f},\tilde{g}\colon \tilde{X}_1\to \tilde{X}_2$ iff $f_\sharp,g_\sharp\colon\pi_1\to\pi_2$ have $f_\sharp,g_\sharp(\Gamma_1)\subseteq\Gamma_2$. So define $\mathfrak{F}(f,g,\Gamma_2)=\{\Gamma_1\in\mathfrak{F}(\pi_1)|f_\sharp,g_\sharp(\Gamma_1)\subseteq\Gamma_2\}$.

The averaging theorem of Lefschetz coincidence numbers and estimation

We will refer to the lifting diagram

$$\begin{array}{ccc} \tilde{X}_1 & \xrightarrow{\bar{f}, \bar{g}} & \tilde{X}_2 \\ \downarrow^{p_1} & & \downarrow^{p_2} \\ X_1 & \xrightarrow{f, g} & X_2 \end{array}$$

as the $\Gamma_1 - \Gamma_2$ lifting diagram of f and g. For any $\Gamma_1 - \Gamma_2$ lifting diagram, since the finite regular covers are compact, the lifts \tilde{f}, \tilde{g} have the coincidence index defined.

In any $\Gamma_1 - \Gamma_2$ lifting diagram, Γ_i has covering group $\Phi_i = \pi_i/\Gamma_i$. f_{\sharp} and g_{\sharp} induce maps $\overline{f}, \overline{g} \colon \Phi_1 \to \Phi_2$. If $\tilde{f}, \tilde{g} \colon \tilde{X}_1 \to \tilde{X}_2$ are fixed "reference lifts" of f and g, then all lifts have the form $\beta \circ \tilde{f} \circ \alpha, \beta \circ \tilde{g} \circ \alpha$ with $\alpha \in \Phi_1, \beta \in \Phi_2$. But $\tilde{f} \circ \alpha = \overline{f}(\alpha) \circ \tilde{f}$, so we need only consider lifts of the form $\alpha \circ \tilde{f}, \alpha \circ \tilde{g}$.

PROPOSITION 2.1. C is a coincidence class in $Coin(\alpha \circ \tilde{f}, \beta \circ \tilde{g})$ iff it is a coincidence class in $Coin(\beta^{-1}\alpha \circ \tilde{f}, \tilde{g})$.

Thus, we need only consider lifting pairs of f, g of the form $(\alpha \circ \tilde{f}, \tilde{g})$. We introduce the Reidemeister classes Φ_2/\sim , where $\alpha \sim \beta$ iff $\overline{g}(\gamma)\beta = \alpha \overline{f}(\gamma)$ for some $\gamma \in \Phi_1$. The Reidemeister class of α is denoted by $[\alpha]$;

$$[\alpha] = \{\beta \in \Phi_2 | \overline{g}(\gamma)\beta = \alpha \overline{f}(\gamma) \text{ for some } \gamma \in \Phi_1\}.$$

The $mod(\Gamma_1, \Gamma_2)$ Reidemeister number $R_{(\Gamma_1, \Gamma_2)}(f, g)$ is the number of Reidemeister classes.

Proposition 2.2.

$$Cion(f,g) = \bigcup_{\alpha \in \Phi_2} p_1 Coin(\alpha \circ \tilde{f}, \tilde{g}) = \bigsqcup_{[\alpha]} p_1 Coin(\alpha \circ \tilde{f}, \tilde{g}).$$

Proof. By [3, Theorem 1.5], note that $p_1Coin(\alpha \circ \tilde{f}, \tilde{g}) = p_1Coin(\beta \circ \tilde{f}, \tilde{g})$ if $\beta \in [\alpha]$, and $p_1Coin(\alpha \circ \tilde{f}, \tilde{g}) \cap p_1Coin(\beta \circ \tilde{f}, \tilde{g}) = \phi$ if $\beta \notin [\alpha]$.

DEFINITION 2.3. The number $\mu([\alpha])$ defined by $\mu([\alpha]) = |\{\gamma \in \Phi_1|\overline{g}(\gamma)\alpha = \alpha\overline{f}(\gamma)\}|$ is called the multiplicity of class $[\alpha]$.

It is easy to check that this number is independent of the choice of α in $[\alpha]$.

LEMMA 2.4. If $x \in p_1Coin(\alpha \circ \tilde{f}, \tilde{g})$, then $\mu([\alpha]) := |p_1^{-1}(x) \cap Coin(\alpha \circ \tilde{f}, \tilde{g})|$.

Proof. Where $\tilde{x} \in p_1^{-1}(x) \cap Coin(\alpha \circ \tilde{f}, \tilde{g})$, it is easily shown that $\gamma \tilde{x} \in Coin(\alpha \circ \tilde{f}, \tilde{g})$ iff $\overline{g}(\gamma)\alpha = \alpha \overline{f}(\gamma)$.

PROPOSITION 2.5. Suppose X_1, X_2 are compact connected orientable manifolds of the same dimensions and neither is a surface with negative Euler characteristic. If $\Gamma_1 \in \mathfrak{F}(f,g,\Gamma_2)$ and (f,g) lift to (\tilde{f},\tilde{g}) in the $\Gamma_1 - \Gamma_2$ lifting diagram, then for any $\alpha \in \Phi_2$, $L(\alpha \circ \tilde{f},\tilde{g}) = \mu([\alpha])Ind(f,g,p_1Coin(\alpha \circ \tilde{f},\tilde{g}))$.

Proof. We may assume that f and g have only isolated coincidences. Then we have $Ind(\alpha \circ \tilde{f}, \tilde{g}, \tilde{x}) = Ind(f, g, x)$ for $\tilde{x} \in p_1^{-1}(x)$. By Lemma 2.4, every coincidence of f and g in $p_1Coin(\alpha \circ \tilde{f}, \hat{g})$ has $\mu([\alpha])$ coincidences of $\alpha \circ \tilde{f}$ and \tilde{g} above it. Hence

$$\begin{split} L(\alpha \circ \tilde{f}, \tilde{g}) &= \sum_{\tilde{x} \in Coin(\alpha \circ \tilde{f}, \tilde{g})} Ind(\alpha \circ \tilde{f}, \tilde{g}, \tilde{x}) \\ &= \mu([\alpha]) \sum_{x \in p_1 Coin(\alpha \circ \tilde{f}, \tilde{g})} Ind(f, g, x) \\ &= \mu([\alpha]) Ind(f, g, p_1 Coin(\alpha \circ \tilde{f}, \tilde{g})). \end{split}$$

LEMMA 2.6. $\mu([\alpha]) \cdot |[\alpha]| = |\Phi_1|$.

Proof. Φ_1 acts on $[\alpha]$ by $\alpha \xrightarrow{\gamma} \overline{g}(\gamma^{-1})\alpha \overline{f}(\gamma)$. The action is transitive, and the isotropy subgroup is $\{\gamma | \overline{g}(\gamma)\alpha = \alpha \overline{f}(\gamma)\}$.

THEOREM 2.7 (AVERAGING). Suppose X_1, X_2 are compact connected orientable manifolds of the same dimensions, and neither is a

The averaging theorem of Lefschetz coincidence numbers and estimation

surface with negative Euler characteristic. If $\Gamma_1 \in \mathfrak{F}(f,g,\Gamma_2)$ and (f,g) lift to (\tilde{f},\tilde{g}) in the $\Gamma_1 - \Gamma_2$ lifting diagram, then

$$L(f,g) = \frac{1}{|\Phi_1|} \sum_{\alpha \in \Phi_2} L(\alpha \circ \tilde{f}, \hat{g}).$$

Proof.

$$\begin{split} \sum_{\alpha \in \Phi_2} L(\alpha \circ \tilde{f}, \tilde{g}) &= \sum_{\alpha \in \Phi_2} \mu([\alpha]) Ind(f, g, p_1 Coin(\alpha \circ \tilde{f}, \tilde{g})) \\ &= \sum_{[\alpha]} |[\alpha]| \mu([\alpha]) Ind(f, g, p_1 Coin(\alpha \circ \tilde{f}, \tilde{g})) \\ &= |\Phi_1| \sum_{[\alpha]} Ind(f, g, p_1 Coin(\alpha \circ \tilde{f}, \tilde{g})) \\ &= |\Phi_1| L(f, g). \end{split}$$

The following proposition corresponds to Theorem 4.15[3] by the same way theorem 3.2.8 [2] corresponds to Theorem 2.2.1 and 2.2.5 in fixed point theory.

PROPOSITION 2.8. Suppose X_1, X_2 are compact connected manifolds. If $\Gamma_1 \in \mathfrak{F}(f,g,\Gamma_2)$, then $R_{(\Gamma_1,\Gamma_2)} \geq |Coker(g_{1*}-f_{1*})/\eta \cdot \theta(\Gamma_2)|$, where $\theta \colon \pi_1(Y) \to H_1(Y)$ is abelianization and $\eta \colon H_1(Y) \to Coker(H_1(Y)) \xrightarrow{g_{1*}-f_{1*}} H_1(Y)$ is the natural projection. If Φ_2 is abelian, then equality holds.

LEMMA 2.9. Suppose X_1, X_2 are compact connected manifolds. If Φ_2 is abelian and $\Gamma_1 \in \mathfrak{F}(f, g, \Gamma_2)$, then $\mu([\alpha]) = \frac{|\Phi_1|}{|\Phi_2|} |Coker(g_{1*} - f_{1*})/\eta \cdot \theta(\Gamma_2)|$ for all $\alpha \in \Phi_2$.

Proof. By Proposition 2.8, we have $R_{(\Gamma_1,\Gamma_2)}(f,g) = |Coker(g_{1*} - f_{1*})/\eta \cdot \theta(\Gamma_2)|$. Since Φ_2 is abelian, there is one-to-one corresponding from $[\alpha]$ to $[\beta]$ defined by

$$\gamma \longrightarrow \gamma \alpha^{-1} \beta$$

for any $\gamma \in [\alpha]$. So all Reidemeister classes of f and g consist of the same number (say k), and $k \cdot |Coker(g_{1*} - f_{1*})/\eta \cdot \theta(\Gamma_2)| = |\Phi_2|$. Lemma 2.6 tell us $k \cdot \mu([\alpha]) = |\Phi_1|$. Hence

$$\mu([\alpha]) = \frac{|\Phi_1|}{|\Phi_2|} |Coker(g_{1\star} - f_{1\star})/\eta \cdot \theta(\Gamma_2)|.$$

Now we consider the case that π_1 and π_2 are finite groups. Then we can apply trivial subgroups of π_1 and π_2 to above results. In this case, the $mod(\Gamma_1, \Gamma_2)$ Reidemeister number is the Reidemeister number R(f,g) of f and g and a nonempty set $p_1Coin(\alpha \circ \tilde{f}, \tilde{g})$ equals to a coincidence class of f and g.

The argument in Theorem 2.5.6[2] also establishes the following, quoting Proposition 2.5 and Lemma 2.9.

THEOREM 2.10. Suppose X_1, X_2 are compact connected orientable manifolds of the same dimensions with the finite fundamental groups π_1 and π_2 , and neither is a surface with negative Euler characteristic. Assume the action of π_2 on the rational homology of the universal covering space \tilde{X}_2 of X_2 is trivial, i.e., for every covering translation $\alpha \in \pi_2$, $\alpha_* = id$: $H_*(\tilde{X}_2: Q) \to H_*(\tilde{X}_2: Q)$. Then, for every $f,g\colon X_1 \to X_2$, L(f,g) = 0 implies N(f,g) = 0; $L(f,g) \neq 0$ implies $N(f,g) = R(f,g) \geq |Coker(g_{1*} - f_{1*})|$. If π_2 is abelian, then $R(f,g) = |Coker(g_{1*} - f_{1*})|$ and the coincidence index of the coincidence classes are all equal.

References

- 1. R. Brooks, Coincidence, roots and fixed points, Doctoral Dissertation, Univ. of California, L.A, 1967.
- 2. B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics 14 (1983), Amer. Math. Soc., Providence, Rhode Island.
- 3. Chan Gyu Jang, Estimation of the Δ -Nielsen numbers. Doctoral Dissertation, Chonbuk National Univ..
- C. McCord, Estimating Nielsen numbers on Infrasolvmanifolds, Pacific J. Mathematics 154 (1992).
- C. McCord, Counting Nielsen numbers, Contemporary Mathematics 152 (1993), Amer. Math. Soc.

The averaging theorem of Lefschetz coincidence numbers and estimation

- 6. D. McCord, An Estimate of the Nielsen number and an example concerning Lefschetz fixed point theorem, Pacific J. Mathematics 66 (1976).
- 7. Spanier, E. H., Algebraic Topology, McGrawhill, New York, 1966.

DEPT. OF MATH., CHONBUK NATIONAL UNIV., CHONJU 560-756, KOREA