BEST SIMULTANEOUS APPROXIMATIONS FROM A CONVEX SUBSET

SUNG HO PARK* AND HYANG JOO RHEE

1. Introduction

Let U and V be nonempty compact subsets of two Hausdorff topological vector spaces. Suppose that a function $J:U\times V\to\mathbb{R}$ is such that for each $v\in V$, $J(\cdot,v)$ is lower semi-continuous and convex on U, and for each $u\in U$, $J(u,\cdot)$ is upper semi-continuous and concave on V. Then, as is well known [2], there exists a saddle point $(u^*,v^*)\in U\times V$ such that

$$(1.1) J(u^*, v) \le J(u^*, v^*) \le J(u, v^*), \ u \in U, v \in V,$$

that is,

$$\min_{u \in U} \max_{v \in V} J(u, v) = \max_{v \in V} \min_{u \in U} J(u, v).$$

However, if V is not convex, or if for some $u \in U$, $J(u, \cdot)$ is not a concave function on V, then the relation (1.1) does not hold in general.

THEOREM 1.1.[4]. Let U be an n-dimensional, compact convex set in a Hausdorff topological vector space $(n \ge 1)$ and let V be a compact Hausdorff space. Let $J: U \times V \to \mathbb{R}$ be a jointly continuous function. Then $u^* \in U$ minimizes $\max_{v \in V} J(u, v)$ over U if and only if there exists $(\overline{\lambda}_{n+1}^*, \overline{v}_{n+1}^*) \in \overline{V}_{n+1}$ such that

(1.2)
$$\sum_{i=1}^{n+1} \lambda_i J(u^*, v_i) \le \sum_{i=1}^{n+1} \lambda_i^* J(u^*, v_i^*) \le \sum_{i=1}^{n+1} \lambda_i^* J(u, v_i^*)$$

Received October 4, 1994.

1991 AMS Subject Classification: 41A28.

Key words and phrases: Best uniform approximation, Best simultaneous approximation.

*Supported partially by the Basic Science Research Institute program, Ministry of Education.

holds for all $(\overline{\lambda}_{n+1}, \overline{v}_{n+1}) \in \overline{V}_{n+1}$ and for all $u \in V$, where

$$\overline{V}_{n+1} = \{ (\overline{\lambda}_n, \overline{v}_n) | \overline{\lambda}_n = (\lambda_1, \cdots, \lambda_n), \overline{v} = (v_1, \cdots, v_n),$$

$$\sum_{i=1}^n \lambda_i = 1, \lambda_i \ge 0, v_i \in V(i = 1, \cdots, n) \}.$$

2. Best Uniform Approximations

Let X be a compact Hausdorff space and let Y be a normed linear space with a norm $||\cdot||$. Let C(X,Y) denote the set of all continuous functions from X to Y. Let C be a convex set in an n-dimensional subspace of C(X,Y) and $F \in C(X,Y)$. An element $f^* \in C$ is called a best uniform approximation to F from C if f^* minimizes

$$\max_{x \in X} ||f(x) - F(x)||$$

over C, that is, if

$$\max_{x\in X}||f^*(x)-F(x)||\leq \max_{x\in X}||f(x)-F(x)||$$

holds for all $f \in C$. For $f \in C(X, Y)$, we define the uniform norm of f by

$$|||f||| = \max_{x \in X} ||f(x)||,$$

and endow the linear space C(X,Y) with the uniform topology. Clearly ||f(x)-F(x)|| is a jointly continuous function of two variables f, x and convex in f, i.e.,

$$||(\lambda f + (1 - \lambda)g)(x) - F(x)|| \le \lambda ||f(x) - F(x)|| + (1 - \lambda)||g(x) - F(x)||$$

for all $f, g \in C(X, Y), x \in X$, and $\lambda, 0 \le \lambda \le 1$. Hence if C is a convex set in a finite dimensional subspace of C(X, Y), we can apply Theorem 1.1 and obtain the following necessary and sufficient condition of a best uniform approximation from C.

THEOREM 2.1. Let C be a closed convex set in an n-dimensional subspace of C(X,Y) and $F \in C(X,Y)$. Then $f^* \in C$ is a best uniform approximation to F from C if and only if there exist $\lambda_1^*, \dots, \lambda_k^* > 0$, $\sum_{i=1}^k \lambda_i^* = 1$, and k distinct elements x_1^*, \dots, x_k^* of X, where $1 \leq k \leq n+1$, satisfying

(i)
$$||f^*(x_i^*) - F(x_i^*)|| = |||f^* - F||| \quad i = 1, 2, \dots, k;$$

(ii)
$$\sum_{i=1}^{k} \lambda_i^* ||f(x_i^*) - F(x_i^*)|| \ge \sum_{i=1}^{k} \lambda_i^* ||f^*(x_i^*) - F(x_i^*)||$$

for any $f \in C$.

Proof. (\Rightarrow) Let f^* be a best uniform approximation to F from C and let $U=\{f\in C\,|\,||f^*-f||\leq 1\}$. Then f^* minimizes $\max_{x\in X}||f(x)-F(x)||$ over U and U is a compact subset of C because it is bounded and closed in an n-dimensional subspace. By Theorem 1.1, there exist $\lambda_1',\cdots,\lambda_{n+1}'\geq 0,\;\sum_{i=1}^{n+1}\lambda_i'=1,$ and $\{x_1',\cdots,x_{n+1}'\}\subset X$ such that

(2.1)
$$\sum_{i=1}^{n+1} \lambda_i' ||f^*(x_i') - F(x_i')|| \ge \sum_{i=1}^{n+1} \lambda_i ||f^*(x_i) - F(x_i)||$$

for all $(\overline{\lambda}_{n+1}, \overline{x}_{n+1}) \in \overline{X}_{n+1} = \{(\overline{\lambda}_{n+1}, \overline{x}_{n+1}) : \overline{\lambda}_{n+1} = (\lambda_1, \dots, \lambda_{n+1}),$

$$\overline{x}_{n+1} = (x_1, \dots, x_{n+1}), \sum_{i=1}^{n+1} \lambda_i = 1, \lambda_i \ge 0, x_i \in X(i = 1, \dots, n+1)\};$$

(2.2)
$$\sum_{i=1}^{n+1} \lambda_i' ||f(x_i') - F(x_i')|| \ge \sum_{i=1}^{n+1} \lambda_i' ||f^*(x_i') - F(x_i')||$$

for all $f \in U$. Let us denote the nonzero elements within $\lambda'_1, \dots, \lambda'_{n+1}$ by $\lambda^*_1, \dots, \lambda^*_k$ and the corresponding elements within x'_1, \dots, x'_{n+1} of X by x^*_1, \dots, x^*_k . The assertion (i) follows from (2.1) which means, for $i = 1, \dots, k$,

$$||f^*(x_i^*) - F(x_i^*)|| = \max_{x \in X} ||f^*(x) - F(x)|| = |||f^* - F|||.$$

On the other hand, it follows from (2.2) that

$$\sum_{i=1}^{k} \lambda_{i}^{*} ||f(x_{i}^{*}) - F(x_{i}^{*})|| \ge \sum_{i=1}^{k} \lambda_{i}^{*} ||f^{*}(x_{i}^{*}) - F(x_{i}^{*})||$$

holds for all $f \in U$. Since the left-hand side of the above inequality is a convex function of f and has a local minimum at f^* , f^* realizes a global minimum by a property of convex functions. Thus ii) holds.

(⇐) Conversely, suppose that (i) and (ii) hold. These two conditions yield

$$\sup_{(\overline{\lambda}_k, \overline{x}_k) \in \overline{X}_k} \inf_{f \in C} \sum_{i=1}^k \lambda_i ||f(x_i) - F(x_i)|| \ge \sum_{i=1}^k \lambda_i^* ||f^*(x_i^*) - F(x_i^*)||$$

$$= |||f^* - F|||,$$

where \overline{X}_k is similarly defined as the set \overline{X}_{n+1} . The left-hand side of the last relation is equal to or less than

$$\inf_{f \in C} \max_{(\overline{\lambda}_k, \overline{x}_k) \in \overline{X}_k} \sum_{i=1}^k \lambda_i ||f(x_i) - F(x_i)|| = \inf_{f \in C} \max_{x \in X} ||f(x) - F(x)||,$$

so

$$|||f^* - F||| \le \inf_{f \in C} |||f - F|||.$$

Therefore, f^* is a best uniform approximation to F from C.

REMARK. The proof of Theorem 2.1 is the same as that of Theorem 4.1 in [4].

The next corollary states that f^* is a best uniform approximation on X if and only if it also is on some finite subset of X.

COROLLARY 2.2. Let C be a closed convex set in an n-dimensional subspace of C(X,Y) and $F \in C(X,Y)$. Then f^* is a best uniform approximation to F from C if and only if there exist k elements $x_1^*, \dots, x_k^* \in X$, where $1 \le k \le n+1$, for which f^* satisfies

(i)
$$||f^*(x_i^*) - F(x_i^*)|| = |||f^* - F|||, \quad j = 1, \dots, k;$$

(ii)
$$\max_{1 \le j \le k} ||f(x_j^*) - F(x_j^*)|| \ge \max_{1 \le j \le k} ||f^*(x_j^*) - F(x_j^*)||$$

for all $f \in C$.

COROLLARY 2.3 [3]. Let C be an n-dimensional subspace of C(X,Y) and $F \in C(X,Y)$. Then $f^* \in C$ is a best uniform approximation to F from C if and only if there exist $\lambda_1^*, \dots, \lambda_k^* > 0$, $\sum_{i=1}^k \lambda_i^* = 1$, and k distinct elements x_1^*, \dots, x_k^* of X, where $1 \le k \le n+1$, satisfying

(i)
$$||f^*(x_i^*) - F(x_i^*)|| = |||f^* - F|||, \ i = 1, \dots k;$$

(ii)
$$\sum_{i=1}^{k} \lambda_{i}^{*} f(x_{i}^{*}) - F(x_{i}^{*}) || \geq \sum_{i=1}^{k} \lambda_{i}^{*} || f^{*}(x_{i}^{*}) - F(x_{i}^{*}) ||$$

for all $f \in C$.

Proof. The conclusion holds since an n-dimensional subspace is a closed convex set.

3. Best Simultaneous Approximations

Suppose that functions F_1, \dots, F_ℓ are in C(X, Y). Define a norm on the linear space of ℓ -tuples of elements of C(X, Y) as follows: for any F_1, \dots, F_ℓ in C(X, Y) let $\mathbf{F} = (F_1, \dots, F_\ell)$ and

$$|||\mathbf{F}||| = |||(F_1, \cdots, F_\ell)||| = \max_{||\mathbf{a}||_1} ||| \sum_{i=1}^{\ell} a_i F_i|||.$$

We want to approximate these functions simultaneously by functions in a closed convex set C in an n-dimensional subspace of C(X,Y). That is, the problem is to find a function $f \in C$ which minimizes

(3.1)
$$\max_{1 \le i \le \ell} \max_{x \in X} ||F_j(x) - f(x)||$$

over C. If such a function f^* in C exists, we call it a best simultaneous approximation for $\mathbf{F} = (F_1, \dots, F_\ell)$ from C.

In this section, we want to derive a necessary and sufficient condition for a function to be a best simultaneous approximation. It is easy to show that (3.1) can be expressed as

$$\max_{\mathbf{a} \in A} \max_{x \in X} || \sum_{j=1}^{\ell} \alpha_j F_j(x) - f(x)|| = \max_{\mathbf{a} \in A} \max_{x \in X} ||\mathbf{a} \mathbf{F}(x) - f(x)||$$

where the set A is defined by

$$A = \{ \mathbf{a} = (\alpha_1, \dots, \alpha_\ell) : \sum_{j=1}^{\ell} \alpha_j = 1, \ \alpha_j \ge 0 (1 \le j \le \ell) \}.$$

If $\sum_{j=1}^{\ell} \alpha_j F_j(x)$ is denoted by the inner product $\mathbf{aF}(x)$ of two vectors $\mathbf{a} = (\alpha_1, \alpha_2, \dots, \alpha_{\ell})$ and $\mathbf{F}(x) = (F_1(x), \dots, F_{\ell}(x))$, then the problem takes on the expression

(3.2) minimize
$$\max_{(\mathbf{a}, x) \in A \times X} ||\mathbf{aF}(x) - f(x)||$$
 over the set C .

Note that $A \times X$ is compact, and $||\mathbf{a}F(x) - f(x)||$ is a jointly continuous function of three variables \mathbf{a} , x, f and convex in f, that is,

$$||\mathbf{aF}(x) - (\theta f + (1-\theta)g)(x)|| \le \theta ||\mathbf{aF}(x) - f(x)|| + (1-\theta)||\mathbf{aF}(x) - g(x)||$$
 for all $f, g \in C$ and $\theta, 0 \le \theta \le 1$.

THEOREM 3.1. Let C be a closed convex set in an n-dimensional subspace of C(X,Y) and let $\mathbf{F}=(F_1,\cdots,F_\ell)$. Then $f^*\in C$ is a best simultaneous approximation for \mathbf{F} from C if and only if there exist $\lambda_1^*,\cdots,\lambda_k^*>0,\ \sum_{i=1}^k\lambda_i^*=1,\ k$ distinct elements $x_1^*,\cdots,x_k^*\in X$, and k vectors $\mathbf{a}_1^*,\cdots,\mathbf{a}_k^*\in A$, where $1\leq k\leq n+1$, such that

(i)
$$||\mathbf{a}_{i}^{*}\mathbf{F}(x_{i}^{*}) - f^{*}(x_{i}^{*})|| = \max_{1 \leq j \leq \ell} ||F_{j}(x_{i}^{*}) - f^{*}(x_{i}^{*})||$$
$$= \max_{1 \leq i \leq \ell} |||F_{j} - f^{*}||| \quad i = 1, \dots, k;$$

(ii)
$$\sum_{i=1}^{k} \lambda_{i}^{*} ||\mathbf{a}_{i}^{*} \mathbf{F}(x_{i}^{*}) - f(x_{i}^{*})|| \ge \sum_{i=1}^{k} \lambda_{i}^{*} ||\mathbf{a}_{i}^{*} \mathbf{F}(x_{i}^{*}) - f^{*}(x_{i}^{*})||$$

for any $f \in C$.

Proof. By the preceding remarks concerning the function $||\mathbf{a}F(x) - f(x)||$, we can apply Theorem 1.1. The rest of the proof is similar to that of Theorem 2.1.

Recall that the subdifferential or set of subgradients of $||| \cdot |||$ at any element f of C(X,Y) is the set defined by

$$\begin{split} \partial |||f||| &= \{ w \in C^*(X,Y) : |||g||| \geq |||f||| \\ &+ < w, g - f > \text{for any } g \in C(X,Y) \} \end{split}$$

where the usual inner product notation is used to link elements of C(X,Y) and its dual $C^*(X,Y)$. For an ℓ -tuple $\Phi = (\phi_1, \dots, \phi_{\ell})$ of functions in C(X,Y), define the set

$$\begin{split} G(\Phi) &= \{ (\mathbf{a}, w) : &\mathbf{a} \in \mathbb{R}^\ell, ||\mathbf{a}||_1 = 1, \\ &\sum_{i=1}^\ell a_i \phi_i = |||\Phi|||u, |||u||| = 1, w \in \partial |||u||| \}. \end{split}$$

Now let

$$\phi_i(f) = F_i - f, \quad i = 1, \cdots, \ell$$

for all $f \in C$ and let H(f) denote the set of ℓ -tuples $\{h_1, \dots, h_\ell\}$ of elements in $C^*(X, Y)$ defined by

$$H(f) = conv\{(a_1\omega, \cdots, a_\ell\omega) : (\mathbf{a}, \omega) \in G(\Phi(f))\},\$$

where as usual 'conv' is used to denote the convex hull. Note that

$$\sum_{i=1}^{\ell} \langle h_i, \phi_i(f) \rangle = ||\Phi(f)|| \text{ for all } \mathbf{h} \in H(f).$$

For $f \in C$ and any $\mathbf{a} \in \mathbb{R}^{\ell}$ with $||\mathbf{a}||_1 = 1$, define

$$E(\mathbf{a}, f) = \{ x \in X : || \sum_{i=1}^{\ell} a_i \phi_i(f(x)) ||_Y = |||\Phi(f)||| \},$$

and let

$$E(f) = \{x \in X \, : \, || \sum_{i=1}^{\ell} a_i \phi_i(f(x)) ||_Y = |||\Phi(f)||| \text{ for some } \mathbf{a}, \, ||\mathbf{a}|| = 1\}.$$

Then for each distinct $x_k \in E(f)$, there exists \mathbf{a}_k , $||\mathbf{a}_k||_1 = 1$, such that (3.3) $x_k \in E(\mathbf{a}_k, f)$.

In particular, $(\mathbf{a}, w) \in G(\Phi(f))$ implies that

$$w \in conv\{v(x)\delta(x): x \in E(\mathbf{a},f)\},$$

where δ is the delta function, and $v(x) \in \partial ||\sum_{i=1}^{\ell} \alpha_i \phi_i(f(x))||_Y$. Thus

$$< w, f> = \sum_{k=1}^{s} \mu_k < v(x_k), f(x_k) >_Y,$$

where $\langle \cdot, \cdot \rangle_Y$ denotes an inner product between elements of Y and its dual, where $x_k \in E(\mathbf{a}, f)$ and $\mu_k, k = 1, \dots, s$, are nonnegative numbers summing to 1.[See [5]]

COROLLARY 3.2. Let C be a closed convex set in an n-dimensional subspace of C(X,Y). Then $f^* \in C$ is a best simultaneous approximation for F from C if and only if there exist $m(\leq n+1)$ distinct elements x_1, \dots, x_m of $E(f^*)$, m vectors $\mathbf{a}_1, \dots, \mathbf{a}_m$ satisfying $x_k \in E(\mathbf{a}_k, f^*)(k = 1, \dots, m)$ and m positive numbers $\gamma_1, \dots, \gamma_m$ summing to 1 such that

$$\sum_{k=1}^{m} \gamma_k ||\mathbf{a}_k \mathbf{F}(x_k) - f(x_k)|| \ge \sum_{k=1}^{m} \gamma_k ||\mathbf{a}_k \mathbf{F}(x_k) - f^*(x_k)||$$

for any $f \in C$.

Proof. By Theorem 3.1 and the above argument, f^* is a best simultaneous approximation for \mathbf{F} from C if and only if there exist $\gamma_1, \dots, \gamma_m > 0$, $\sum_{k=1}^m \gamma_k = 1$, m distinct elements $x_1, \dots, x_m \in X$ and k vectors $\mathbf{a}_1, \dots, \mathbf{a}_m \in A$, where $1 \leq k \leq n+1$, such that

(1)
$$||\mathbf{a}_{k}\mathbf{F}(x_{k}) - f^{*}(x_{k})|| = \max_{1 \leq j \leq \ell} ||F_{j}(x_{k}) - f^{*}(x_{k})||$$

$$= \max_{1 \leq j \leq \ell} |||F_{j} - f^{*}||| \quad k = 1, \dots, m$$

(2)
$$\sum_{k=1}^{m} \gamma_k ||\mathbf{a}_k \mathbf{F}(x_k) - f(x_k)|| \ge \sum_{k=1}^{k} \gamma_k ||\mathbf{a}_k \mathbf{F}(x_k) - f^*(x_k)||$$

for any $f \in C$ if and only if there exist $m \leq n+1$ distinct elements x_1, \dots, x_m of $E(f^*)$, m vectors $\mathbf{a}_1, \dots, \mathbf{a}_m$ satisfying $x_k \in E(\mathbf{a}_k, f^*)(k = 1, \dots, m)$ and m positive numbers $\gamma_1, \dots, \gamma_k$ summing to 1 such that

$$\sum_{k=1}^{m} \gamma_k ||\mathbf{a}_k \mathbf{F}(x_k) - f(x_k)|| \ge \sum_{k=1}^{m} \gamma_k ||\mathbf{a}_k \mathbf{F}(x_k) - f^*(x_k)||$$

for any $f \in C$.

Since an n-dimensional subspace is a closed convex set, we obtain the next corollary.

COROLLARY 3.3. [4]. Let C be an n-dimensional subspace of C(X,Y). Then $f^* \in C$ is a best simultaneous approximation for F from C if and only if there exist $\lambda_1^*, \dots, \lambda_k^* > 0$, $\sum_{i=1}^k \lambda_i^* = 1$, k distinct elements $x_1^*, \dots, x_k^* \in X$, and k vectors $\mathbf{a}_1^*, \dots, \mathbf{a}_k^* \in A$, where $1 \leq k \leq n+1$, such that

(i)
$$||\mathbf{a}_{i}^{*}\mathbf{F}(x_{i}^{*}) - f^{*}(x_{i}^{*})|| = \max_{1 \leq j \leq \ell} ||F_{i}(x_{i}^{*}) - f^{*}(x_{i}^{*})||$$

$$= \max_{1 \leq i \leq \ell} |||F_{j} - f^{*}||| || i = 1, \dots, k;$$

(ii)
$$\sum_{i=1}^{k} \lambda_{i}^{*} ||\mathbf{a}_{i}^{*} \mathbf{F}(x_{i}^{*}) - f(x_{i}^{*})|| \ge \sum_{i=1}^{k} \lambda_{i}^{*} ||\mathbf{a}_{i}^{*} \mathbf{F}(x_{i}^{*}) - f^{*}(x_{i}^{*})||$$

for any $f \in C$.

COROLLARY 3.4. Let C be a closed convex subset in an n-dimensional subspace of C(X,Y) and let $\mathbf{F}=(F_1,\cdots,F_\ell)$. If there exist $m(\leq n+1)$ distinct elements x_1,\cdots,x_m of $E(f^*)$, m vectors $\mathbf{a}_1,\cdots,\mathbf{a}_m$ satisfying with $f=f^*$, and m positive numbers γ_1,\cdots,γ_m summing to 1 such that

(i)
$$\sum_{k=1}^{m} \gamma_k < v_k(x_k), f^*(x_k) >_Y = 0;$$

(ii)
$$\sum_{k=1}^{m} \gamma_k < v_k(x_k), f(x_k) >_Y \le 0$$

for any $f \in C$, where $v_k(x) \in \partial || \sum_{i=1}^{\ell} a_k^i \phi_i(f^*(x)) ||_Y, k = 1, 2, \dots, m$, then $f^* \in C$ is a best simultaneous approximation for F from C.

Proof. By Theorem 3.1, it suffces to show that

$$\sum_{k=1}^{m} \gamma_{k} || \sum_{i=1}^{\ell} a_{k}^{i} \phi_{i}(f^{*}(x_{k})) ||_{Y} \leq \sum_{k=1}^{m} \gamma_{k} || \sum_{i=1}^{\ell} a_{k}^{i} \phi_{i}(f(x_{k})) ||^{Y}$$

for any $f \in C$. Let $f \in C$ be arbitrary, and let

$$v_k(x) \in \partial ||\sum_{i=1}^{\ell} a_k^i \phi_i(f^*(x_k))||_Y \quad k = 1, 2, \cdots, m$$

satisfy (i) and (ii). Then

$$\begin{split} \sum_{k=1}^{m} \gamma_{k} || \sum_{i=1}^{\ell} a_{k}^{i} \phi_{i}(f^{*}(x_{k}))||_{Y} \\ &= \sum_{k=1}^{m} \gamma_{k} < v_{k}(x_{k}), \sum_{i=1}^{\ell} a_{i}^{k}(F_{i}(x_{k}) - f^{*}(x_{k})) >_{Y} \\ &\leq \sum_{k=1}^{k} \gamma_{k} < v_{k}(x_{k}), \sum_{i=1}^{\ell} a_{i}^{k}(F_{i}(x_{k}) - f(x_{k})) >_{Y} \\ &\leq \sum_{i=1}^{m} \gamma_{k} || \sum_{i=1}^{\ell} a_{k}^{i} \phi_{i}(f(x_{k}))||_{Y}. \end{split}$$

Thus f^* is a best simultaneous approximation for F from C.

COROLLARY 3.5. Let C be a convex subset in an n-dimensional subspace of C(X,Y) and let $\mathbf{F}=(F_1,\dots,F_\ell)$. If there exists $\mathbf{h}=(h_1,h_2,\dots,h_\ell)\in H(f^*)$ such that

(i)
$$\sum_{i=1}^{\ell} < h_i, f - f^* > \le 0$$

for all $f \in C$, then $f^* \in C$ is a best simultaneous approximation for F from C.

Proof. Let f be any element of C. Then

$$||\phi(f)|| = \max_{||\mathbf{a}||_1=1} ||\sum_{i=1}^{\ell} a_i(F_i - f)||_A$$

 $\geq < w, \sum_{i=1}^{\ell} a_i(F_i - f) >$

for all $(\mathbf{a}, w) \in G(\Phi(f^*))$. Suppose that $\mathbf{h} \in H(f^*)$ satisfies (i). Then

$$\begin{split} ||\phi(f)|| &\geq \sum_{i=1}^{\ell} < h_i, F_i - f > \\ &= \sum_{i=1}^{\ell} < h_i, F_i - f^* + f^* - f > \\ &\geq \sum_{i=1}^{\ell} < h_i, F_i - f > \\ &= ||\phi(f^*)||. \end{split}$$

Thus f^* is a best simultaneous approximation for \mathbf{F} from C.

References

- 1. E. W. Cheney, Introduction to Approximation Theory, MacGrow-Hill, New York (1966).
- 2. K. Fan, Minimax theorems, Proc. Nat. Acad. Sc. U.S.A. 39 (1953), 42 47.
- S. Tanimoto, Uniform approximation and a generalized minimax theorem, J. Approx. Theory 45 (1985), 1-10.
- S. Tanimoto, A characterization of best simultaneous approximations, J. Approx. Theory 59 (1989), 359-361.
- G. A. Watson, A characterization of best simultaneous approximations, J. Approx. Theory (1993), 175-182.

Sung Ho Park and Hyang Joo Rhee

SUNG HO PARK

DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, CPO 1142, SEOUL 121-742, KOREA

HYANG JOO RHEE

DEPARTMENT OF GENERAL STUDIES, DUKSUNG WOMEN'S UNIVERSITY, SEOUL 132-714, KOREA