Bull. Korean Math. Soc. 33 (1996), No. 1, pp. 57-64

MEAN ERGODIC THEOREM AND
MULTIPLICATIVE COCYCLES

GeoN H. CHOE

1. Introduction

Let (X, B, u) be a probability space. Then wesay 7: X — X is a
measure-preserving transformation if u(7~'E) = u(E). and we call it
an ergodic transformation if u(r "' EAE) = 0 for a measurable subset
E implies u(E) = 0. An equivalent definition is that constant functions
are the only 7-invariant functions.

Let G be a compact abelian group with its normalized Haar measure
and I' a countably infinite dense subgroup. Let G denote the dual group
cousisting of characters of G. Recall that G is discrete and that the
characters form an orthonormal basis for the Hilbert space L*(G). For
example, let R be the additive group of real numbers, Z its subgroup
of integers. Then the quotient group R/Z is just the unit circle T
identified with the half open interval [0,1). Its dual group is Z. Let
7o be the translation in a compact abelian group G by an element g.
It preserves the Haar measure on G. It is ergodic if and only if the
subgroup {ng :n € Z} is dense in G. If G is the unit circle [0, 1), then
g generates a dense subgroup if and only if ¢ is an irrational number.

Multiplicative cocycles were first studied by Helson to investigate the
Wiener type or Beurling type invariant subspaces on compact abelian
groups. Here is a formal definition:

DEFINITION. Let G be a compact abelian group and I" a dense sub-
group. A function 4 on I' x G is called a multiplicative cocycle defined
on I' if it satisfies the following:
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(1)

(i) Ay = A(9,-) is a measurable function on G for every + in I

(11) A(y1 +y2,0) = A(y1,2)A(y2, £ — 71) a. e. with respect to y for
every vy, vy in I'.

A(7, )| = 1 almost everywhere with respect to p for every v € T

From now on, by cocyeles we simply mean multiplicative cocycles
if there is no ambiguity. For the applications of cocyeles arising from
irrational rotations on the cirele, see [2],[3].

A continuous unitary representation of a compact group G on a
Hilbert space H is a group homomorphism ¢ — Uy from G into the
group of unitary operators ¢(H) such that the map g — Ug(h) 1s con-
tinuous from G into H for each fixed h € H. Then for cach vector
h € H there is a unique positive Borel measure u, on G such that

(Ugh,,h,):ﬁX'<g)(izth(,X'>

(€3

where (|, ) denotes the inner product of H. The proof follows from
Bochner’s theorem, since the map g — (Uyh, k) is a positive definite
function on G. In fact, the measures j; are obtained from a single
spectral measure P on G satisfying (P(E)h, h) = p,(E) for measurable
subsets E C é, so that

m:/“mwu)

«

For details on unitary representations, see [5].

PROPOSITION 1. Let G be a compact abelian group with the nor-
malized Haar measure 1. For a dense subgroup T we are given a cocycle

A. Define U, - L*(G, 1) — L*(G, p) by the formul:
(Usf)e) = AL, ) fla = )

where v € G, f € L*G) for every v € T. Then {U,}.er is a (not
necessarily continuous) unitary representation of T
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REMARK. Sometimes I' is endowed with the discrete topology so
that the mapping v — U, f € L*(G) is automatically continuous from

I into L?(G).

Proof. It is obvious that ||U., fil2 = || f]|2 since |A(7, )| = 1 a.c. with
respect to p for every v € T'. Now let us show that U, 4., = U, U,
for 41,72 € . Take x € G, f € L*(G). Then we have

(U‘h U"/zf)(‘r) = (’r71(44(72»~77)f(1 —72))
A(v1, 0)A(v2, 2 =) fle — (n + 72))
= (l’r7’1+72f)(5r)~ U

Il

DEFINITION. Let g be a measurable function on G and |g(r)] = 1 a.e.

with respect to p. Define B(vy,z) = q(z)g(z —v). Then B: T x G — T
satisfies

B(yi + 72, 1) = g(x)g{z — 71 — 72)

ll

(g(x
B(y

Il

Jg(e —v1))glz — 1)l — 1 — 72))
1, 7)B(ga. ¢ = ).
Hence B is a cocycle. We call it a multiplicative coboundary, or a

coboundary if there is no danger of ambiguity. Sometimes I' is generated
by one clement vo. Then the relation B(7o, ) = ¢(x)g(x — ) defines a

coboundary on I' uniquely and B satisfies B(nvg.r) = ¢q(xr)g(r — nvyo).
In general, if a function f(z) of modulus 1 a.e. s of the form f(x) =

q(x)q(x — n7g), then we also call it a coboundary.

For irrational rotations, coboundaries are related with uniform dis-
tribution of integral multiples of irrational numbers as pointed out in
[7]: For an irrational number 6 € T and an interval I C T, we define

n—1
Sy(r) = Z xi(r—j8)=card{j: 0<j<n,z—jel}

j=0
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where \; is the characteristic function of I. Then Weyl-Kronecker
theorem says that for every z

lim lS,,,(.r,) =m(I)

n—oo0 1N

where m is the Lebesgue measure on T. Now let z; € {0,1} be such
that .r; = 5;(0) (mod 2). Veech[7] proved that for every irrational § € T
there exists an interval I, depending on 6, for whick lim,, .., L - Z":Ol T
does not exist. Let 6 = [a;,ay,...,ax,...] be the continued fm(tl()n
cxpansion of irrational 0 < 8§ < 1, where ay,as. ..., ai,... arc called
partial quotients, and my /ny = [a;, ag, ..., ax], (mk ng) = 1, are called
convergents. They satisfy |6 —my /ng| < 1/ 2n?) for every k > 1. The
irrational numbers with bounded partial quotients form a set of measure
zero. The limit, not necessarily equal to 1/2, exists for every interval
I C T if and only if  has bounded partial quotients in its continued
fraction cxpansion. If exp(wiys) is a coboundary, then the limit is
not equal to 1/2. For # with bounded partial quotients, exp(wiy ;)
15 a multiple of a coboundary if and only if m(F) € Z-6 + Z. If
6 has unbounded partial quotients, then exp(riy;) is a multiple of a
coboundary for uncountably many values of the length m(I). For the
application of coboundaries for uniform distributior. of the orbits under
general measure preserving transformations, see [1].

In this article we show that a multiplicative cocyrle giving a continu-
ous unitary representation of a countably dense sut.group of a compact
abelian group is a multiplicative coboundary.

2. Main Result
PROPOSITION 2. If A(v,x) is a coboundary, then the corresponding

unitary representation {U,} is unitarily equivalent to {T.} where T, :
G — G is the translation by ~.

Proof. Since A(v,x) = q(x)g(x — ) for some ¢, we have

(U, f)(x) = q(x)gla — ) flz — ) = (§T qf))(x).
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So U, f =qT,(qf), MU, = T,M,, where M, means the unitary opera-
tors defined by multiplication by q. What we have here is the following
diagram:

LYG) %, LYG)

Mql Mql O
. T
LYG) —— L*(G)
Let (X,m) be a o-finite measure space, T : X — X a measure-

preserving transformation, and f € L?(X, m). Then the classical Mean
Ergodic Theorem due to von Neumann states that thereis f € L%( X, m)

o1 G ey
for which = 3°77  foT* converges to f in L2, In general, if U is a con-
n

traction on a Hilbert space H, i.e., |USf]| < ||fll for f € H, and if
M={heH:Uf = f}and P:H — H the projection of H onto M,

1 _ .
then — Z:zﬂl U* f converges to Pf in H. For the proofs, see D.23, [6].
n

The following result might be called an integral version of von Neu-
maun’s Mean Ergodic Theorem.

PROPOSITION 3. Let G be a compact abelian group and {Ug}eq a
continous unitary representation of G in a Hilbert space H. Let P be
the self-adjoint orthogonal projection onto the subspace

Hy ={h € H:Ush = h for every g € G}.

Then P satisfies the relation
/ Ughdu(g) = Ph
G

for every h € H, where dyt is the normalized Haar measure on G.

Proof. Since {U,} is a continuous unitary representation, we can find

a spectral measure on the dual group G, which is discrete and satisfies
the following:

Uy = x(9)Py

xel
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where {P\} is a family of mutually orthogonal self-adjoint projections

in L*(G) such that Z\ P, = 1. Hence we have

/( Ughdp(g) =Y {/ x(g)dﬂr(g)} Pyh.

~ G
xel

But f(; \(9)dp(g) = 0 if and only if y # 1. Thus

/ Ughdu(g) = Pih

JG

where Py is the orthogonal projection corresponding to y = 1.

Now we show that H; = {h € H : Pyh = h}, that is, P = P,. If
h € Hy. then Ugh = h for all ¢ € G, hence h = Pih. If Pih = h, then
P.h =0for y # 1. So we have

Ugh = Z x(g)Pyh = Pyh = h. C
\EG

In [4] it is shown that {Uj}ep is a unitary representation of R in
L*(R) given by a cocycle A : R x R — T as in Proposition 1. Then
{Ux}xer is a continuous unitary representation of R if and ouly if 4 is
a coboundary. The proof uses Weyl commutation relation and spectral
theory. In the following we prove a similar result for a compact abelian
group using the Mcan Ergodic Theorem. This illustrates an aspect of
the invariant subspace method that is used in (1].

THEOREM. Let T' be a dense subgroup of a compact abelian group
G. Suppose that {U,},er is a unitarv representation of T' in L*(G)
given by a cocycle A: T x G — T. Then {U,},¢r can be extended to a
continnous unitary representation of G if and only i A is a coboundary.

Proof. If Ais a coboundary of the form A(g,r) == ¢(x)g(x — ¢), then
define a unitary operator Uy for every ¢ by

(Ugf)x) = q()g(x — g)f(x — g) for f € L*(G).
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Since the map ¢ — T,f is continuous from G into L?(G), the map-
ping g — U,f is also continuous. (See the commutative diagram in
Proposition 2.)

Now for the other direction of the statement we let {Ug} e be a
continuous unitary extension of {Uy},er. Put 4, = U,1 for every ¢
and define 4 : G x G — T by A(g,x) = Ag(x). It is easy to see that
A is a cocycle on G x G such that (Ugf)(x) = A(g,r)f(x — ¢g) where
r € G, g € G. Then by Proposition 3 we have an orthogonal projection
P onto H; in L*(G) satisfying [, U, fdu(g) = Pf for f € L*(G). We
claim that H; # {0}. Suppose not. Then [, U,fdu(g) = 0 for any f.

Replacing f by characters y we have

/A(g,r)x(:“g)ffu(g):/ A(g,x)x(2)x(g)du(g) =0

6]

7

for almost every r in G. Since |y x)| = 1 for every r, we have f(; A(g, )

x(g)dp(g) = 0 for a.c. z. Hence at a.e. fixed r, we see that A(g,z) =0
in L?(G). Thus Je: 1Alg, 2)|dp(g) = 0 for a.e. z and

/ |A(g., x)|dz dulg / / |A(g, z)ldu(g)dz = 0.
GJG

Now this contradicts the fact that A(g,x) = U,1(x) has its L*-norm
equal to 1 for every ¢g. So our claim is proved.

Since we have H; # {0}, we choose f € H; such that ||f]|o = 1. Then
Usf = f, Alg,z)f(r — g) = f(z) for a.e. x. Putting g(z) = f(r), w
obtain A(g,z) = ¢{x)g{x — g). Sm(( lg(z)| = lg(x)A(g,x)| = |g(x — g)|
for every ¢ € G, we sece that |g(x)| is constant. Now [|g|l; = 1 implies
that |¢(r)|=1. O
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