MEAN ERGODIC THEOREM AND MULTIPLICATIVE COCYCLES

GEON H. CHOE

1. Introduction

Let (X, \mathcal{B}, μ) be a probability space. Then we say $\tau : X \to X$ is a measure-preserving transformation if $\mu(\tau^{-1}E) = \mu(E)$. and we call it an ergodic transformation if $\mu(\tau^{-1}E\triangle E) = 0$ for a measurable subset E implies $\mu(E) = 0$. An equivalent definition is that constant functions are the only τ -invariant functions.

Let G be a compact abelian group with its normalized Haar measure and Γ a countably infinite dense subgroup. Let \widehat{G} denote the dual group consisting of characters of G. Recall that \widehat{G} is discrete and that the characters form an orthonormal basis for the Hilbert space $L^2(G)$. For example, let \mathbb{R} be the additive group of real numbers, \mathbb{Z} its subgroup of integers. Then the quotient group \mathbb{R}/\mathbb{Z} is just the unit circle \mathbb{T} identified with the half open interval [0,1). Its dual group is \mathbb{Z} . Let τ_g be the translation in a compact abelian group G by an element G. It preserves the Haar measure on G. It is ergodic if and only if the subgroup $\{ng:n\in\mathbb{Z}\}$ is dense in G. If G is the unit circle [0,1), then G generates a dense subgroup if and only if G is an irrational number.

Multiplicative cocycles were first studied by Helson to investigate the Wiener type or Beurling type invariant subspaces on compact abelian groups. Here is a formal definition:

DEFINITION. Let G be a compact abelian group and Γ a dense subgroup. A function A on $\Gamma \times G$ is called a multiplicative cocycle defined on Γ if it satisfies the following:

Received June 28, 1994.

1991 AMS Subject Classification: 22D10, 28C10, 47A35.

Key words: Mean ergodic theorem, cocycle.

This work was partially supported by GARC-KOSEF.

- (i) $|A(\gamma, x)| = 1$ almost everywhere with respect to μ for every $\gamma \in \Gamma$.
- (ii) $A_{\gamma} \equiv A(\gamma, \cdot)$ is a measurable function on G for every γ in Γ .
- (iii) $A(\gamma_1 + \gamma_2, x) = A(\gamma_1, x)A(\gamma_2, x \gamma_1)$ a. e. with respect to μ for every γ_1, γ_2 in Γ .

From now on, by cocycles we simply mean multiplicative cocycles if there is no ambiguity. For the applications of cocycles arising from irrational rotations on the circle, see [2],[3].

A continuous unitary representation of a compact group G on a Hilbert space \mathcal{H} is a group homomorphism $g \mapsto U_g$ from G into the group of unitary operators $\mathcal{U}(\mathcal{H})$ such that the map $g \mapsto U_g(h)$ is continuous from G into \mathcal{H} for each fixed $h \in \mathcal{H}$. Then for each vector $h \in \mathcal{H}$ there is a unique positive Borel measure μ_h on \widehat{G} such that

$$(U_g h, h) = \int_{\widehat{G}} \chi(g) \, d\mu_h(\chi)$$

where (-,-) denotes the inner product of \mathcal{H} . The proof follows from Bochner's theorem, since the map $g \mapsto (U_g h, h)$ is a positive definite function on G. In fact, the measures μ_h are obtained from a single spectral measure P on \widehat{G} satisfying $(P(E)h, h) = \mu_h(E)$ for measurable subsets $E \subset \widehat{G}$, so that

$$U_g = \int_{\widehat{G}} \chi(g) \, dP(\chi).$$

For details on unitary representations, see [5].

PROPOSITION 1. Let G be a compact abelian group with the normalized Haar measure μ . For a dense subgroup Γ we are given a cocycle A. Define $U_{\gamma}: L^2(G,\mu) \to L^2(G,\mu)$ by the formula

$$(U_{\gamma}f)(x) = A(\gamma, x)f(x - \gamma)$$

where $x \in G$, $f \in L^2(G)$ for every $\gamma \in \Gamma$. Then $\{U_{\gamma}\}_{{\gamma} \in \Gamma}$ is a (not necessarily continuous) unitary representation of Γ

REMARK. Sometimes Γ is endowed with the discrete topology so that the mapping $\gamma \to U_{\gamma}$, $f \in L^2(G)$ is automatically continuous from Γ into $L^2(G)$.

Proof. It is obvious that $||U_{\gamma}f||_2 = ||f||_2$ since $|A(\gamma, x)| = 1$ a.e. with respect to μ for every $\gamma \in \Gamma$. Now let us show that $U_{\gamma_1 + \gamma_2} = U_{\gamma_1}U_{\gamma_2}$ for $\gamma_1, \gamma_2 \in \Gamma$. Take $x \in G$, $f \in L^2(G)$. Then we have

$$\begin{split} (U_{\gamma_1}U_{\gamma_2}f)(x) &= U_{\gamma_1}(A(\gamma_2,x)f(x-\gamma_2)) \\ &= A(\gamma_1,x)A(\gamma_2,x-\gamma_1)f(x-(\gamma_1+\gamma_2)) \\ &= (U_{\gamma_1+\gamma_2}f)(x). \quad \Box \end{split}$$

DEFINITION. Let q be a measurable function on G and |q(x)| = 1 a.e. with respect to μ . Define $B(\gamma, x) = \overline{q(x)}q(x - \gamma)$. Then $B: \Gamma \times G \to \mathbb{T}$ satisfies

$$\begin{split} B(\gamma_1+\gamma_2,x) &= \overline{q(x)}q(x-\gamma_1-\gamma_2) \\ &= (\overline{q(x)}q(x-\gamma_1))(\overline{q(x-\gamma_1)}q(x-\gamma_1-\gamma_2)) \\ &= B(\gamma_1,x)B(q_2,x-\gamma_1). \end{split}$$

Hence B is a cocycle. We call it a multiplicative coboundary, or a coboundary if there is no danger of ambiguity. Sometimes Γ is generated by one element γ_0 . Then the relation $B(\gamma_0, x) = \overline{q(x)}q(x-\gamma_0)$ defines a coboundary on Γ uniquely and B satisfies $B(n\gamma_0, x) = \overline{q(x)}q(x-n\gamma_0)$. In general, if a function f(x) of modulus 1 a.e. is of the form $f(x) = \overline{q(x)}q(x-n\gamma_0)$, then we also call it a coboundary.

For irrational rotations, coboundaries are related with uniform distribution of integral multiples of irrational numbers as pointed out in [7]: For an irrational number $\theta \in \mathbb{T}$ and an interval $I \subset \mathbb{T}$, we define

$$S_n(x) = \sum_{j=0}^{n-1} \chi_I(x - j\theta) = \text{card}\{j : 0 \le j < n, x - j\theta \in I\}$$

where χ_I is the characteristic function of I. Then Weyl-Kronecker theorem says that for every x

$$\lim_{n \to \infty} \frac{1}{n} S_n(x) = m(I)$$

where m is the Lebesgue measure on T. Now let $x_j \in \{0,1\}$ be such that $x_j \equiv S_j(0) \pmod{2}$. Veech[7] proved that for every irrational $\theta \in \mathbb{T}$ there exists an interval I, depending on θ , for which $\lim_{n\to\infty} \frac{1}{n} \sum_{j=0}^{n-1} x_j$ does not exist. Let $\theta = [a_1, a_2, ..., a_k, ...]$ be the continued fraction expansion of irrational $0 < \theta < 1$, where $a_1, a_2, ..., a_k, ...$ are called partial quotients, and $m_k/n_k = [a_1, a_2, ..., a_k], (m_k, n_k) = 1$, are called convergents. They satisfy $|\theta - m_k/n_k| < 1/(2n_k^2)$ for every $k \ge 1$. The irrational numbers with bounded partial quotients form a set of measure zero. The limit, not necessarily equal to 1/2, exists for every interval $I \subset \mathbb{T}$ if and only if θ has bounded partial quotients in its continued fraction expansion. If $\exp(\pi i \chi_I)$ is a coboundary, then the limit is not equal to 1/2. For θ with bounded partial quotients, $\exp(\pi i \chi_I)$ is a multiple of a coboundary if and only if $m(I) \in \mathbb{Z} \cdot \theta + \mathbb{Z}$. θ has unbounded partial quotients, then $\exp(\pi i \chi_I)$ is a multiple of a coboundary for uncountably many values of the length m(I). For the application of coboundaries for uniform distribution of the orbits under general measure preserving transformations, see [1].

In this article we show that a multiplicative cocycle giving a continuous unitary representation of a countably dense subgroup of a compact abelian group is a multiplicative coboundary.

2. Main Result

PROPOSITION 2. If $A(\gamma, x)$ is a coboundary, then the corresponding unitary representation $\{U_{\gamma}\}$ is unitarily equivalent to $\{T_{\gamma}\}$ where T_{γ} : $G \to G$ is the translation by γ .

Proof. Since $A(\gamma, x) = \overline{q(x)}q(x - \gamma)$ for some q, we have

$$(U_{\gamma}f)(x) = \overline{q(x)}q(x-\gamma)f(x-\gamma) = (\overline{q}T_{\gamma}(qf))(x).$$

So $U_{\gamma}f = \overline{q}T_{\gamma}(qf)$, $M_qU_{\gamma} = T_{\gamma}M_q$, where M_q means the unitary operators defined by multiplication by q. What we have here is the following diagram:

$$\begin{array}{ccc} L^2(G) & \xrightarrow{U_g} & L^2(G) \\ M_q & & M_q \\ & & & L^2(G) & \xrightarrow{T_{\gamma}} & L^2(G) \end{array}$$

Let (X,m) be a σ -finite measure space, $T:X\to X$ a measure-preserving transformation, and $f\in L^2(X,m)$. Then the classical Mean Ergodic Theorem due to von Neumann states that there is $\overline{f}\in L^2(X,m)$ for which $\frac{1}{n}\sum_{k=0}^{\infty}f\circ T^k$ converges to \overline{f} in L^2 . In general, if U is a contraction on a Hilbert space \mathcal{H} , i.e., $||Uf||\leq ||f||$ for $f\in \mathcal{H}$, and if $\mathcal{M}=\{h\in\mathcal{H}:Uf=f\}$ and $P:\mathcal{H}\to\mathcal{H}$ the projection of \mathcal{H} onto \mathcal{M} , then $\frac{1}{n}\sum_{k=0}^{n-1}U^kf$ converges to Pf in \mathcal{H} . For the proofs, see P.23, [6].

The following result might be called an integral version of von Neumann's Mean Ergodic Theorem.

PROPOSITION 3. Let G be a compact abelian group and $\{U_g\}_{g\in G}$ a continuous unitary representation of G in a Hilbert space \mathcal{H} . Let P be the self-adjoint orthogonal projection onto the subspace

$$\mathcal{H}_1 = \{ h \in \mathcal{H} : U_g h = h \text{ for every } g \in G \}.$$

Then P satisfies the relation

$$\int_G U_g h \, d\mu(g) = Ph$$

for every $h \in \mathcal{H}$, where $d\mu$ is the normalized Haar measure on G.

Proof. Since $\{U_g\}$ is a continuous unitary representation, we can find a spectral measure on the dual group \widehat{G} , which is discrete and satisfies the following:

$$U_g = \sum_{\chi \in \widehat{G}} \chi(g) P_{\chi}$$

where $\{P_{\chi}\}$ is a family of mutually orthogonal self-adjoint projections in $L^2(G)$ such that $\sum_{\chi} P_{\chi} = 1$. Hence we have

$$\int_G U_g h \, d\mu(g) = \sum_{\chi \in \widehat{G}} \left\{ \int_G \chi(g) d\mu(g) \right\} P_\chi h.$$

But $\int_G \chi(g) d\mu(g) = 0$ if and only if $\chi \neq 1$. Thus

$$\int_G U_g h \, d\mu(g) = P_1 h$$

where P_1 is the orthogonal projection corresponding to $\chi \equiv 1$.

Now we show that $\mathcal{H}_1 = \{h \in \mathcal{H} : P_1 h = h\}$, that is, $P = P_1$. If $h \in \mathcal{H}_1$, then $U_g h = h$ for all $g \in G$, hence $h = P_1 h$. If $P_1 h = h$, then $P_{\chi} h = 0$ for $\chi \neq 1$. So we have

$$U_g h = \sum_{\chi \in \widehat{G}} \chi(g) P_{\chi} h = P_1 h = h. \qquad \Box$$

In [4] it is shown that $\{U_{\lambda}\}_{{\lambda}\in\mathbb{R}}$ is a unitary representation of \mathbb{R} in $L^2(\mathbb{R})$ given by a cocycle $A:\mathbb{R}\times\mathbb{R}\to\mathbb{T}$ as in Proposition 1. Then $\{U_{\lambda}\}_{{\lambda}\in\mathbb{R}}$ is a continuous unitary representation of \mathbb{R} if and only if A is a coboundary. The proof uses Weyl commutation relation and spectral theory. In the following we prove a similar result for a compact abelian group using the Mean Ergodic Theorem. This illustrates an aspect of the invariant subspace method that is used in [1].

THEOREM. Let Γ be a dense subgroup of a compact abelian group G. Suppose that $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$ is a unitary representation of Γ in $L^2(G)$ given by a cocycle $A:\Gamma\times G\to \mathbb{T}$. Then $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$ can be extended to a continuous unitary representation of G if and only if A is a coboundary.

Proof. If A is a coboundary of the form $A(g,x) = \overline{q(x)}q(x-g)$, then define a unitary operator U_g for every g by

$$(U_g f)(x) = \overline{q(x)}q(x-g)f(x-g)$$
 for $f \in L^2(G)$.

Since the map $g \mapsto T_g f$ is continuous from G into $L^2(G)$, the mapping $g \mapsto U_g f$ is also continuous. (See the commutative diagram in Proposition 2.)

Now for the other direction of the statement we let $\{U_g\}_{g\in G}$ be a continuous unitary extension of $\{U_\gamma\}_{\gamma\in\Gamma}$. Put $A_g=U_g1$ for every g and define $A:G\times G\to \mathbb{T}$ by $A(g,x)=A_g(x)$. It is easy to see that A is a cocycle on $G\times G$ such that $(U_gf)(x)=A(g,x)f(x-g)$ where $x\in G, g\in G$. Then by Proposition 3 we have an orthogonal projection P onto \mathcal{H}_1 in $L^2(G)$ satisfying $\int_G U_g f d\mu(g)=Pf$ for $f\in L^2(G)$. We claim that $\mathcal{H}_1\neq\{0\}$. Suppose not. Then $\int_G U_g f d\mu(g)=0$ for any f. Replacing f by characters χ we have

$$\int_G A(g,x)\chi(x-g)d\mu(g) = \int_G A(g,x)\chi(x)\overline{\chi(g)}d\mu(g) = 0$$

for almost every x in G. Since $|\chi(x)| = 1$ for every x, we have $\int_G A(g,x) \frac{1}{\chi(g)} d\mu(g) = 0$ for a.e. x. Hence at a.e. fixed x, we see that A(g,x) = 0 in $L^2(G)$. Thus $\int_G |A(g,x)| d\mu(g) = 0$ for a.e. x and

$$\int_G \int_G |A(g,x)| dx \, d\mu(g) = \int_G \int_G |A(g,x)| d\mu(g) dx = 0.$$

Now this contradicts the fact that $A(g,x) = U_g 1(x)$ has its L^2 -norm equal to 1 for every g. So our claim is proved.

Since we have $\mathcal{H}_1 \neq \{0\}$, we choose $f \in \mathcal{H}_1$ such that $||f||_2 = 1$. Then $U_g f = f$, A(g,x) f(x-g) = f(x) for a.e. x. Putting $q(x) = \overline{f(x)}$, we obtain $A(g,x) = \overline{q(x)}q(x-g)$. Since |q(x)| = |q(x)A(g,x)| = |q(x-g)| for every $g \in G$, we see that |q(x)| is constant. Now $||q||_2 = 1$ implies that $|q(x)| \equiv 1$. \square

References

- 1. G. H. Choe, Spectral types of uniform distribution, Proc. Amer. Math. Soc. 120 (1994), 715-722.
- 2. _____, Ergodicity and irrational rotations, Proc. R. Ir. Acad. 93A (1993), 193-202.
- 3. _____, Weakly mixing interval exchange transformations, Math. Japonica 38 (1993), 727-734.

Geon H. Choe

- 4. H. Helson, The Spectral Theorem (Lecture Notes in Math. 1227), Springer-Verlag, New York, 1986.
- 5. S. Kye, Notes On Abstract Harmonic Analysis (Lecture Notes Series 20), Seoul Nat. Univ., Seoul, 1994.
- 6. K. Petersen, Ergodic theory, Cambridge London, 1983, pp. 24-25.
- W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker Weyl theorem mod 2, Trans. Amer. Math. Soc. 140 (1968), 1-33.

DEPARTMENT OF MATHEMATICS, KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, TAEJON 305-701, KOREA