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ABSTRACT FUNCTIONAL EVOLUTIONS
IN GENERAL BANACH SPACES

K1 Six HAfAND KI-YEON SHIN

1. Introduction and preliminaries

Let X be a real Banach space with norm || - {|. We let C' denote the
space of all continuous functions f : [-r,0] — X for a fixed r > 0. For

FEC, Iflic =sup_,<,co IF()]-

We consider the abstract functional evolutions of the type

z'(t) + A(t, z¢)z(t) 3 G(t,z;), te€[0,T],
g = ¢, —r S t S 0

(FDE : ¢) (

in a general Banach space, where for a function f : [-r,T] — X,
fi(8) = f(t+s),t € [0,T), s € [~r,0] with a positive constant T
An operator A: D C X — 2% is called “accretive” if

lzy — zaoff < |l&1 — 22 + A(y1 — y2)|

for every A > 0 and every [z1,y1],[z2,y2] € A. It is called “m-
aceretive” if it is accretive and R(I + AA) = X forall A > 0. If A
15 m-accretive, we set

|Az| = Iﬁ% |Arzll, z€X,
where Ay = (I — Jy)/A with Jy = (I + A4)™!. We also set

D={zeX :|Az} < o).
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126 Ki Sik Ha and Ki-yeon Shin

It is known that D(A) C D(A) C D(A). For other properities of these
operators, the reader is referred to Barbu [1], Crandall [2], Crandall
and Pazy {3} and Evans [4].

Tanaka {12] has recently obtained the existence of a unique limit
solution of the abstract nonlinear functional evolution problem of the
type

'(t) + A()z(t) 2 G(t,z¢), te[0,T), zo=2¢

in a general Banach space by constructing the “lines” which satisfy

certain approximate discrete scheme. The solution is obtained from

the uniform limit of the “lines”. Kartsatos and Parrott {10] also have

the similar results with different method. For the operator A(¢,z.),

Kartsatos and Parrott [8], Kartsatos {7] have studied by use of fixed

point theory and Crandall and Pazy’s result [3].

The following conditions will be used in the sequel.

(A.1) For each (t,9) € [0,T] x C, A(t,¥): D(A(t, %)) C X — 2X
i1s m-accretive in X, where D( A(%,v)) is only dependent on {.
We denote D(A(%,+)) = D(t).

(A.2) For each t,s € [0,T], 41,92 € C,and v € X,

| Ax(E; ¥1)v — Ax(s, 92 )vl|
< Lo([lw|)[It — sl(X + | Ax(s, ¥2)ol]) + [%1 — ¥2le]

where Ly : RY — R* = [0, 00) is nondecreasing, continuous
function.
(A°3) For t,s € [0, T]: and ¢:¢11¢2 € Cs

G, 1) — G(t,42)|| < kalfeor — #aile,
”G(ta 11)) - G(S, ‘l,b)" $ Ll(”d)“C’)lt - S],

where k; is a positive constant and L, : Rt — R* is nonde-
creasing, continuous function.

(A.4) ¢is a given Lipschitz continuous function with Lipschitz con-
stant kg on [—r,0].

By virtue of (A.2), it is known that D(A(t,%)) is independent of
(t,%) €[0,T} x C. (See Evans [4].) We denote by D = D(A(t,4)).
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The main purpose of this paper is to obtain a “generalized solution
” of (FDE:¢) with direct method. When the functional term in A and
G is fixed, (FDE:¢) is converted a very well known evolution prob-
em. Then we employ the Banach contraction principle to get a local
generalized solution.

We define a set E by

E={u:[~r,T] - X | u(t) is continuous, u(t) = ¢(t) for t € {—r,0]
and {Ju(t;) — u(2)} < Mity — o] for ty,¢2 € [0,T]},

where

M > max{ko, (14(0, 6)8(0)| +||G(0, 8)l)e}
is a constant. Clearly, E # ¢ since the function u(t) defined by
u(t) = ¢(t) for t € [—r,0], and u(t) = $(0) for t € [0,T] belongs
to E. Moreover, the set E is a complete metric space with supremum
norm | - r 7.

2. Main results

In the following discussion, we assume that the hypotheses (A.1)-
(A.4) hold and ¢(0) € D. Let u € E be arbitrary but fixed. We shall
first consider a more simple evolution problem which is converted from
(FDE:¢) by employing the above u € E.

By fixing the functional term with u € E, we consider a problem
from (FDE:¢) by the type of

' (1) + A(t,u)z(t) D G(t,u), t€[0,T], =zo=24.
For the simplicity, we put B(t) = A(¢,u,) and g(t) = G(t,u,) for t €
[0, T]. Then our hypotheses (A.1)—(A.3) and the problem are converted

as follows.
(EE : ¢, u) ' () + B(t)x(t) > g(t), t€[0,T], zo= 9.

(B.1) For each t € [0, 7], B(t) : D(t) C X — 2% is m-accretive.
(B.2) For each t,s € [0,7] and v € X,

1Bx()v ~ Ba(s)vll < Lo(ffol)It — si{1 + M)(1 + || Bas)vl})
= Lo(|lvlp)it — sl(1 + [ Ba(s)oll)
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where Ly: R* - Rt is again nondecreasing continuous function with
Lo(p) = (1+ M)Ly(p) and By (t) is the Yosida approximation of B(t).
(B.3) For t,s € [0,T]

llg(2) — g()ll S NGt ue) — G(t,us)|| + 1G (2, us) — G(s, us)]
< kiflue — uslle + Ln(fluslic)lt — s
< (ks M + Ly (fluslle )t — 5]
S (kM + Li(fidllc + MT))lt — s
=Lt — s '

where L, is a constant. Here we have used the below result luslie <
l¢llc + MT.

LEMMA 1. Let (A.1)-(A.4) hold. Then, for fixed u € E, there exist
C, = Cy4), i = 1,2,3,4, which are independent of u, such that

|A(t, ue)¢(0)] = [B(t)p(O)} < C1 + CoT, t€[0,T],
IG(tudlf = llg(ll < Cs + CLT, te[0,T]

where

Cr =[A(0,4)$(0),  Ca = Lo(J|4(0))(1 + M + C1),

(1) Cs = ||G(0,8)ll,  Ca= kM + Ly (||d]|c).

REMARK 1. We note that constants C,-C, are dependent only on
¢ by (1).
Proof. First we show |ju,—¢|lc < MT. Fort € [0,T] and 8 € [=r, 0],
if t +8 >0, then
l[4(8) — #(8)]| = [[u(t + 6) — $(6)]
< llu(t + 8) — #(0)|] + f|4(0) ~ #(8)]]
< kol6] + M|t + 6] < Mt < MT.
Ift+ 6 <0 then

[1£(8) — #(O)]| = é(t +6) — S(O)|| < kot < MT.
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Hence, [l — dllc = supe(so) lu(t + 6) — 68} < MT.
By (A.2), we have
| Ax(t, ue)(0)]
< [|Ax(0, $)¢(0)I + La(ll4(0)1) {1t — 0{(1 + || 4x(0, $)8(0){|)
+ [lue - ¢lic}
< 114x(0, )¢l + Lo(ll#(OUD{T(1 + | Ax(0, 8)$(0)]}) + MT}
for ¢ € {0,T]. Letting A — 0, we get

|A(t, u)$(0)] < |A(0, $)¢(0)] + T Lo(||#(0)I){1 + |A(0, 6)$(0)| + M}.
Therefore, | A(t,u;)¢(0)| = |B(t)¢(0)| £ C; + C,T.
Again by (A.3), for ¢t € [0,7]
HG(t,ue) — GO, 8)||
< IG{t,ue) — G(¢, D) + [IG(¢, 6) — G(0, ¢}
< kallue — ol + Li(fidllo)t < b MT + La(||]lc)T
=T(kyM + Li(]|dlic))-
It implies that for t € {0, 7]

lg® = I1GE uoll < GO, H+T (ki M +Ln(ligllc)) = G+ CuT. O

Let {t}}7.o be a partition of the interval [0,T] for fixed n, where
t7 = jha = jT/n, 7 = 0,1,--- ,n. And we let g} = g(t}). When
we put z5 = ¢(0), we construct a sequence {z7}7_, of elements of X
satisfying

n n

T, Ty-1 ny_n n .
h +B(t3)x3 39}1 3=1,2,"’s"
n

by m-accretiveness of B. The step function

{ ¢(t)’ te [—?‘, O]a

za(t) = .

, te(tr_ 7], i=1,2,--,n

15 called an approximate solution of (EE:¢,u). If the approximate so-
lution converge to some continuous function uniformly on [—r, T, we
call it the limit solution of (EE:¢,u) on [—r,T].

By the assumptions (B.1}-(B.3), we may conclude that conditions
(A) and {C2) in Theorem 2 of Evans [4] are satisfied. So there exist a
limit solution on {~r,T] as in {4]. However, we calculate some bounds
precisely to assure that they are independent of .
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LEMMA 2. Let (B.1)-(B.3) and (A.4) hold. Then there exist con-
stants C5 = Cs(¢) and Cy = Cs(¢) such that

} <G

sup{ mas 7} < Cs, and  sup{ max 12 2=l
np 0<y<n TN — 5 P0<}< e

where
(2)
Cs = ||¢(0)]]| + (C1 + C3)T + (C2 + C4)T?,

= Co(#) = Lo(l|6(0)[| + Cs + (C1 + Cs + Co)T +(C2 + Ca)T?),
Cr = C7(¢) = klaM + Li{||dllc + MT)+ (1 + C3 + CsT)Cs,
Ca = [(C] + C3) + T(02 + 04 + 07)] exp{CeT}.

Proof. We assume that n is sufficiently large so that k, < 1 and
1-hnCs > 0. And we set g7 = g(t}) = G(i},ue) and Jy B(t) =
Ia(t,ue) = (I+2A(t, us)) L. Since z} = J',‘B“(t;‘)(x _1+ bhag})s

ey — SO = T2, (2N zmoy + hagl) — TE (17)5(0)]]
+ 12 (17)6(0) — $(0)]
< 12—y = O + Aallg?ll + BnllBr, (£7)$(0)]
< lz7—1 — 80| + An(Cs + C4T) + ha(Ch + CT)
< 2Py — $O)]| + 2ka(Cs + C4T) + 2k (Cy + CoT)

< |lzg = O + 3hn(Cs + C4T) + jho(Cy + C-T)
= T{(Cl + 03) + (Cg + C4)T}

for j =1,2,--+ ,n. It implies that

mex 71| < (0] +(Cy + Co)T +(Cz + Ci)T? = Cs.

Now we have a bound for ||z} — 2}_,||/hn with similar steps. In



Abstract Functional Eveolutions 131

other words,

a3 — @5 all = 175, €3 W27y + hag)) — T (7_ W)=z + hag )]
< IR, G NE—r + hag) ) = T (N5 + hag)_i)I
+ 175, (NS + hag)y) — T2 (F7_ ) (@52 + Bag}i)l
< flayer — 25 ol + hallgy — g7l
+ Rl B (t_1)(27 <2 + hagl_y) = Bh, (7 {2 + hagl_y )|
< fzir — 2Foall + An(ki M + Li([|8llc + MT))hax
+haLo(liz)-all + hallgr DT — 74
(1 + || B, (t]—-l )(m;'-z +hn9;‘—1)"-

Since Bhn(t?-l)(x?-z + th?q )"‘g;'—l — (2] — x?—z)/hn and “3’?—2“
S CS,

llz3 — 27 1)l = llef_y — 27|l + hn® (k1 M + Li(||¢llc + MT))
+ hn2L0(05 + hn(Cs + CaT))(1 4+ Cy + CT + ||($;1_1 - -’C;Lz)/hn”-

It implies that

jpax Nk — X1/

- 1<k< “mk —zp Wb+ ho(kiM + Li(19)lc + MT))

+ hn(l +C5 + CiTYLo(Cs + hp(Cs + C4T))
+ Lo(Cs + hn(C3 + C(T)) max ek — k4]
S\ e llef — Z_4ll/ka + h,,(k M + Li(lliéllc + MT))

+ hn(l 4+ C3 4 C4T)Cs + Cshn max ka - xk—l”/hn
1<k<)

since Lo(Cs ~+ hn(c;; + C4T)) < Cﬁ(¢) Cﬁ = LO(CS -+ Cg + C4T)
Using P, =1 — h,Cs € (0,1), we have

&max Hzk — z3_,l| € ks C7+l max |z} —ai_4]|
h, 1<k<, 'k k-1 b, 1<reX 1%k = Tk
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where C7(¢) = Cr = byM + Li(||dlic + MT) + Cs(1 + C3 + CsT).

Iterating this process, we get

Py hoC 1
E:lrélkaé{ ”wk_zk l"<h C7 Pn7+Phn l<k< ”mk_"‘ck ‘Ltl
n—2 1
<h 072 M azllel — 25l
2 Byt Rl B
n—1 1
< h,Cy — llzt — 2]l
,X_; (Pn) T ha(Pay
Therefore, since |[c} — z§|| < ke[(C1 + C3) + T(C2 + Cy)),
= max |
~ex [lok — 2k
=~ 1 1
< haCy + R
; (Pn)’ hn(Pn)n " 1 0 ”
n
1 1
<haCr Y Byt By (G + o)+ (Cat COT).
s=1 n n
Since

CeT
e E(P)’* Z(P),,ST/( i

=1
and lim, oo(1 = (CeT)/n) " = exp{CsT},
1

e mex ok — k|

S{CT +(Cr + C3) +(Cy + Cy)T) exp{CsT}
<((Cr1+C3)+(Cy + Cy + C7)T)exp{CsT} = C

Consequently,
R

- "J_hfl” <Cs. O

1<3<n n

We now show that the constructed approximated solution z,(t) of
(EE:¢,u) is a Lipshitz function so as to find Lipschitz constant of a
limit solution z,(%) for (EE:¢, u).
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LEMMA 3. Let (B.1)-(B.3) and (A.4) hold. For sufficiently large n,
there exists a constant Cy = Cy(¢) such that

fzal(t) — za(8)l] € 2CsT/n + Colt — 5|, t,s €-rT],

where Cy = max{kq,Cs} which is independent of n and u.

REMARK 2. Since a limit solution of (EE:¢, «) is the uniform con-
vergence of an approximate solution z,(t), we may say that a limit
solution is actually a Lipschitz continuous function with Lipschitz con-
stant Cy. Most important things are Cy is independent of v and a limit
solution could be included in E if the interval T in Cy is adjusted so
that Cg S M.

Proof. We define a function

t) = { é(t), t € [—r,0], o

x5, +(t~t;‘_l)—*Tn4—'—~‘~, te (t;‘_l,t , 3=1,,n

1
Then it is easy to show that z,(t) is a Lipschitz continuous with Lip-
schitz constant Cy. Moreover, since
lizn(t) = za(ll < I} — 27, — (¢ - £]_1)(27 — 271}/ hall
< Wha = (¢ = o))z} = 2f 1)/ hall
< (¢ = Oli(a? = 27y} hall € haC.

fort € (t;‘_l,t;‘],

() — zn(s)} |
< [l2a(t) = 2a(Dll + 120 (t) ~ za(s)I| + fiza(s) — za(s)l
< 2h,Cs + Cylt — s
fort,s € [-r,T]. O

THEOREM 1. Let (A.1)-(A.4) hold and ¢(0) € D. Then there exist
a limit solution z,(t) of (EE:$,u) on [~r, T} for fixed u € E. Moreover,
zy is Lipschitz continuous with Lipschitz constant Cy on [—r, TY.

Proof. By the assumption (B.1), B(t) is m-accretive operator on
X for t € [0,T). Thus, it satisfies the Condition (A) of Evans [4].
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Also, since (B.2) and (B.3) imply the Conditions (C.2), we conclude
that there exists a continuous function z,(t) : [—r,T] — X which is
the uniform convergence of the step function z,(t). Also, the limit
solution z, is Lipschitz continuous with constant Cy by Lemma 3. O

Now we show the relation between the limit solutions of (EE:¢,u)
and (EE:¢,v) for u,v € E.

THEOREM 2. Let z,(t) and y,(t) be the limit solutions of (EE:¢,u)
and (EE:¢,v) in Theorem 1, respectively. Then for 0 <7<t <T

fzu(t) — yo(B)| < flzu(r) — yo(P)| + CoTllw — llj—r1

+ ] (£u(1) = yo(m)s G, (50)a) — G (vo)a) e d-

Proof. Let z,, y, be the limit solutions of (EE:¢, u), (EE:¢, v), re-
spectively. By the definition of the limit solution of (EE:¢,u), there
exists an apprcximate solution z,(t) such that

zt -zt
(3) _'.7.._h.._i_.l_ + A(t?, ‘Ug;t )x;‘ 3 G(t?, ut;: ),
n
za(0) = 23 = $(0) and z,(t) = 27, t € (t]_,, t7), 7 = 1,2,
where by, = t7 —17_;. Also, there ex1sts an approx:ma.te solutmn ym(t)
such that

y - yr
(4) kSRS A(sT, vap Jyr' 3 G(si,vep )

m
ym(0) = y" = $(0) and ym(t) =y, t € (5], 9F), k= 1,2, ,m,
where hp, = sP* ~sp. ;. Let § € (0,7/2) and assume that n and

m are sufficiently large such that max{hn,ﬁm} < §. Then there is
a positive constants Cig = Cyo{¢) and Cj; = Cy1(¢) such that for
p€{0,1,... ,n} and ¢ € {0,1,...,m}

b1 k

e} =yl <flzf —ylll+ CuDsi+ Y 8Pha+ Y 67 hm

(5) v=p i=g
+7ha{(67 (T) + Cro}( Dy + Ity — s7'1)

+p(28) + Co(ha + llu — vll-r,m)}
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forj=p, - - ,nand k =¢q,--- ,m where

CIO 305(1+C3+C4T+CS+M), and
C]] = max{Cw,ZC”g + 2C4T + Cs}.

Here the symbols used above are defined by
67 = [ = yol85), Gt} ugy — Gt (wo)ep)]

where [z,y], = 771(jlz + ry| — |z}]) for 7 > 0,

5 = GG vap) = T o)l + 2l = wlsl
p8) = sup{ 2 u(®) = yo (P + 16, (u)) — Gt (v < ¢ = 7l < 9)
and

Dk = {((t] = t5) = (57 = 57 )* + (] — t9)hn + (sF = 57 Vam}
+ {7 —13) = (5§ = 7)) + (t] — tp)hn + (s — 87" Yhm -

First, we prove that (5) holds. we let 0 = Aphp/(hy + hm). From (3)
and (4), we have

"

A(t?, Ugn )SC;‘ 9 G(t?,ut;&) + _i.lTn_’
| Yeo1 ~ Yk

AT v WE 3 GOE ) + LI

m

Choose 0 < A < 1. Then, with the similar steps in Lemma 5.1 of Evans
(4],

n n

Joa(t],ue)(zh + o MG}, um) + f_::_lgjf_:)) =7,
y}cn—l - yin m
J,A(s}c“,v,;n)(y;" + oz\(G(s}c",vs;n) + —fz_—_)) =y
m
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From (A.2)-(A4),

ll=3 —vi'l

< Woa(ty, ue )=} + o MG}, up) + 25—

n Yio1 — ¥k
Toa(t], uer )y + oMG(sT, vam ) + _5__}2_")) fl
m

n m m y
+ 1 oa(tF ue YYP + oANG(sT, vop) + ‘"”‘;l—"))

Ty a(SP v ) (U + OGS v + L1 YE

1
——
<@} + oG] ug) + A1)

n

Yi- Yi
- (ylc + a’\(G(sk ’ vs"‘) + k_;""_k“)) n

+ALo(I4F + oNG(sF ) + L5 YE ZYE e o

m
m m m y -
(L Aoa(E, 03 )R + o NG(sT, vgp + —=——% )II)

B
+[leer — veplic}
Since

% g? m _ .m

-1 Ye—1— Y

:c}’—yf‘%—m\’h I _gpZhl Tk
n

m

n m A m n Ahn n m
=(1- ’\)(x_: -y )+ m(“’;—l - y;cn) + m(% ~ Yko1)s
n m n m

when we set 4, ; = |3 — y§*||, we have

A Ay
)tAJ'k + (1 - /\)AJ,;‘ = Aj,k S —‘-“‘:.—"—AJ 1.k + _—AJ,k—l

R+ bm " Ryt b
+ 1 = X)(=7 - ¥&") + o A(G(1], ues) — G(si vap || + U,
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where

y — ym n m
U = o ALo(||[yf* + cA(G(sF, vop) + "—h—*)ll){lt, - 5%

’ (1 + “Aa)\(s?s vi:‘ )(y;:n + O’-\(G(s?, vs;“)
Yeoy — Yk
+ BT 4 ug —vplc).

m

It implies that

hm he 1—2A
A — A, 124+ ——A, 1+ —(l{(2T -y
0k S A i 2 k—1 By (=7 ~v&)
O'A n m U
el ==y = v+~
fz hn
h h 31-1.k hn-l-—hm 2.k—t
U
+{ — Yk ,G(G(t “t;‘)—G(S?,”sz‘))]é*’K’
where £ = A/(1 — A). By letting A — 0, since
U m n m m
by —o Lo(lyy D1t} — s L +IG(sK ,vsp) + )u)

+ luer —vspllc}
< aCs{[tT — sy (1 4 Cs + CuT + Cs) + fluer —vsp (el
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we have

~

hm hay
Agp < —2m A b — A
Al S e T

+z7 =y, o(G(HT yur ) — G(sT, vsp )1t
+0Ce{lt; — sP1(1 + C3 + C4T + Cs) + [luer — vspllc}
h k.,

S“**"—l»—A-,k'f'——a—A 1+ oCsiluem — vem|lc
ho + B -1 ey 4 o k=1 6 ¢ 2 |

+0{Cs(1 + C3 + C4T + Cy)lt] — si'|
+iz) — uk, o(G(t], uer) — G(sP, vop )+
Bn h
<—— A9+ —2=A,_
hn + hm Jsk 1 kn + hm 2 ]'k
-
+ ———{Cslluer —vpllc + Co(1 + C3 + CoT + C3)
b + B ;

A = ST+ 8B (16~ D)
by the fact that
(27 — 8, G(t], uep ) — G(sF, vep )]+
< [ — w8, G ) — G ()l
GG o) = GOE (o))l + 29T = ol
FNGEE, (Wodap) = Gl (o) + Hlvalsp) = wulE))]
< 8T+ 87 + p(Jt] — sP)).
Since
85 = SPTS 6T — SF) = hal + B

SIET —13) = (8 —s3) = hal + 1ty = s7| + ha
S Djork+ |ty ~ s3'| + kg,

p(It7 = sT1) < 87 p(TY(I7 — sP1) — ha) + #(26)
< 67 o(THDj—1x + It — 1) + p(26),
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for some p € {0,1,--- ,n} and ¢ € {0,1,--- ,m}, and
e —vaplic < fluw —usplle + vy — vaplle

< Mty — sT |+ luar — vsrlle
<MDy 1k + MJEE — 5T+ Mhy + |[usp —vepllc,

we have
hn flm
A< —2 A+ —2 A,
S S T S e
hohm B
+ 7 AG (1 + G+ CT + Co+ M) + 8 1o(T))

(Dyork + ity — s ) + Co(1 + C3 + CuT + Cs + M)h,
+ 87 + 87 + p(26) + Celfu — vlj{~rmy}-

Consequently, when we put Cyo = Co{l + C3 + C4T + Cs + M), we
have

~

h h
A € — A gy + —2—A,
2k h, + o k=1 I + hon 3—1,k
(6) hnilm —_ n ;m
+ m{(cw + 6 p(T)Dy—1 6 + Ity —£71)

+ Crohn + 87 + 87 4 p(26) + Csllu — vfj[-r1}-

At this moment, we consider ||z} — z}|| for 2 =p+1,--- ,n. Since

n n i
|A(tpa“t;')$;| < "G(tp’u‘;)“ + np—lhﬂ—l“
S C3 + C4T + 083
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by (A.2)

l=f — =3
S o (8 uep @iy + BaG(E7 uen) — Jn, (87, uer ) |
+ 1 Tna (8 uep )xy — 2]
<zt - x;“ + hnlIG(t?$u!?)l[ + ha|A(LY, Uep )37:'
Sl — 2l + RallGEE, wep )| + hal A(E], wep )z
+ haLo(flzp IN{1T — 1511 + 4Gt uen)zp ) + llue — uelich
< leiey ~ 2pll + hn(Cs + CaT) + ho(Cs + CaT + Cs)
+ haCe{lty —t3(1+ C3 + C4T + Co) + M|t} — [}
< letoy —zpll + RaCrolty — t5| 4+ ha(2Cs + 2CT + Cs)
Sllzrey ~ zpll + haCuilty — t5| + haChy,

fori=p+1,---,n where C;; = ma.X{Cw,QC3 + 2C,T + Cs} If we
add this inequality for i = p+1,---,j, we have

7
lfe} — zpll < Cuika(i ~ p) + Crzhn D 17 — 3]

1=p+1
< Crika(i — p) + Cii(G — p)*hn?
= Culty —t5) + Culty — |
< CuD,,.

Forp<j<nandk=gq,

“’T? - :!?;:H < Cll(lt? — t:f + |t;“ _ t:|2)
S CllD);q,

which yields

lz3 —yg'll <llz7 — 2l + llzp —y7'
< "-"’: - y;n" +CuD,,.

Similarly, the above inequality also holds for j = p and ¢ < k < m.
Next, let p+1 < 7 < n and ¢+ 1 < k < m, and suppose that {5) holds
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for the pair (j — 1, k) and (3,k — 1). When we substitute (5) into (6),
we get

k—1

A < {”x — 4™l + C11Dya- ]+Za I

hn — =

+ 7hn [(5_ A(T)+ Cro}( Dy k-1 + ity — s 1) + Croha + p(26)
+ Cﬁ”‘u ~ v{lj-rm]}

1t k
h +}l {" P~y$1|+CllDJ—l,k+Zé?hn+26‘mh
=p 1=—=q

+ (= Dha[(67'(T) + Cro)(Dy-1,6 + Ity — s7') + Ciohn
+ p(2(5) + C(;"u — v]i[_,,.‘T]] }

h"’;‘m - n m
+ m{@ '(T) + Cro)(Dy—1x + Itg — s7'1) + Croha

+ p(28) + 67 + 67 + Collu — o=y }

L3 m hn hm
— lep - yq ” + Cll(ij)k_l + —*DJ—I,k)

n m hn m

2 k
+ Y Erha+ Y 6™ hm + jha{(67p(T) + Cio)

1=p =g
ADyr + [ty ~ s7°1) + Crohn + p(26) + Cslju — U”[—T,TI}

1 k
<llzp — vl + CuDpk + Y 6ha+ ) b
I=p 1=q

+ Jhn{(‘s_lP(T) + Cro)( Dy + 15 — sgnl)
+ Croha + p(26) + Cgllu — UH{—r.Tl }

Here we have used

hn izm
——D. 1+ —D. 1 <D, .
hy + b Hk—1 ho + o 71,k 2.k

Thus it turns out that {5) holds for the pair (3, k). Hence, we conclude
that (5) holds for all p <y < nand g <k <m. Let 7 € (t5_;,4,] 0

p—1»
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(sqiyrsy] and t € (t7_;, 871 N (s, si]. Letting »,m — oo in (§),

1—12%;

(M)
3
l22(2) = yo (O] < fzu(r) — yo(r)l} + lim s;pz HE
1=p
k ~ -~
+limsup » 6™ hm + Tp(26) + CoTl|u — v}](—r,17.
m-—oo 1=q

Since

J 1
Jim 3067 = [ faa(n) ~ valn), G, (22)0) = G0, (o)l

=p

and oo 330 6™hm = 0, letting § | 0 in (7)

i=q ]

[lzalt) - yv(t)“ < ”xu('r) - yv("')” + CGT”“ - v"[ur,T]
+ [ fou() = 1o, G0, (2n) = Gl (o))l

Again, by letting 7 | 0 for the above inequality, we finally have desired
result. O

_ THEOREM 3. Let ¢(0) € D and (A.1)~(A.4) hold. Then there exists
T € (0,T] such that (FDE:¢) has a unique generalized solution on
[0, 7.

Proof. Let u,v € E be arbitrary. By Theorem 2, for t € [0,7] we
have

[zu(t) — yu (B

< CoTlu ~vlfj—r 7y + /0 WG, (zu)y) — G0, (yo)n)ll dn

t
< CoTlu = vljjray + / killze = vollorm dn
0
< CoTllu — vll—r,my + B1 T||2u — yollf-r,17-

Therefore,

(8)  l1za = yallf=r7y < CoTlu = vllj—rzy + ki Tl120 — Yoll=r.77-
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for u,v € E. Noting that Cg = Lo(||¢(0)]] + C3 + (Cy + C3 + Cy)T
(Cz + C4)T?) is independent of u, v, we set

—(C14+C34+Ca)+ /(C1 + C3 4+ Ca)? + 4Cy + 04)

®) Ti= 2(C; + Cy)
(10) Tp = 1/(k1 + K1 + M), where Ky = Ly([|¢(0)|| + C5 + 1),
(11) Ts - M -(Cl + C3)e

(Cg + C4 + Kz)e’
where }\2 = k1M+L (“¢||0+1)+(2+C3)I\1 Let T mm{T T11 T2a

T3}. Then, for the interval {—r, T}, we have same result as in Theorem
2. In other words,

2w — Yollj—r,7y < CoTllv — [, 77 + BT ||2u — yoll—r,71-
But (Cy + Cs + C)T + (Cy + C4)T? < 1 by (9). Moreover Cs <
Lo({|¢{0}]| + C3 +1) = K. It implies that exp{CﬁT} <exp{FK1T} < e
by (10) and C7; < K, by (2). Therefore, on [-r, T},
(12)  Now = pollony < KsTlhu = vllny + FsFllzw = voll ot
We replace T' by T in the set E. Since
Ces = [(C, + Cs) + T(Cg + Cy + C7)) eXp{CsT}

M —(C) + Ci)e
< .
<[(C1+C3)+ C1C T K2)6(02 +C4 + C7)le

<(Cl+03)8+M—(Cl +C3)6=M

we may conchude that Cy = max{ky,Cs} < M. By Lemma 2, the limit
solution z, is included in E for confined interval [~r,T] for v € E.
Therefore, ., € E for all v € E. If we define an operator F : E —» E
by @ — z,, where z,(t) is the limit solution of (EE:¢,u), then F is
a strict contraction on a complete metric space E by {10) and (12).
By the Banach fixed point theorem, there is a unique fixed point of
Fin E, say z(t) for t € [—r,T]. Then, z(t) is the unique generalized
solution of (FDE:¢) which is Lipschitz continuous on [~r,T]. O
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REMARK 3. It is obvious from the proof of the above theorems that
the interval [0, 7] can be replaced by T, T]. Then the solution z(¢) of
(FDE:¢) exists beyond T. With this processing, we may conclude that

there exists a maximal interval of existence of solutions of (FDE:$) on
{0, 7).

REMARK 4. Using the result of Theorem 2, we may have similar
result of Ha, Shin and Jin [6] with the concept of integral solution
defined by Benilan. It is quite interested in investigating the relation
between two evolution operators generated by operators in (FDE:¢)
with different second terms. Also, for a just continuous perturbation
G(t,-), we may apply the method in the paper of Kartsatos and Shin
[11].
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