ON THE CRITICAL RIEMANNIAN METRIC

WON TAE OH

1. Introduction

It is well known that the symplectic manifold is a C^{∞} manifold M^{2n} together with closed 2-form Ω such that $\Omega^n \neq 0$. Kaehler Manifold and cotangent bundles are well known examples. In 1969, S.I. Goldberg conjuctured that a compact almost-Kaehler, Einstein manifold is Kaehlerian. Thurston gave an example of compact symplectic manifold with no Kaehler structure for topological reason in 1976. E. Abbena gave a natural almost Kaehler metric on this manifold and computed its curvature. After then a family of compact homogeneous manifolds M^{2n+2} admitting almost Kaehler structures which are not Kaehlerian, has been reported in [2]. Those manifolds were the analoges of Abbena's case.

On the other hand, the critical points of the function $I(g) = \int_M R \, dV_g$, where R is the scalar structure of the metric g, defined on the set of all Riemannian metrics of the same total volume on a compact manifold M are Einstein metrics[4]. D. E. Blair and Ianus[3] gave a necessary and sufficient conditions of the function defined on the set of metrics associated to a symplectic form on a compact symplectic manifold has the critical point of $K(g) = \int R - R^* dV$, where R^* is the * - scalar curvature.

The main purpose of this paper is to show that the Abbena metric is a critical point of the given intgral function. In section 2, we introduce the 4-dimensional symplectic manifold which are not Kaehlerian. In section 3, we study a integral function with the critical point as Abbena metric.

Received May 13, 1996.

This works was partially supported by KOSEF .

2. 4-dimensional symplectic manifold with no Kaehler structure

In [1] E. Abbena introduce a 4-dimensional compact homogeneous space $M = G/\Gamma$ where G is a certain connected Lie group and Γ a discrete subgroup. This manifold was defined by W. Thurston as a fiber bundle over the 2-torus and was known as an example of a compact symplectic manifold with no Kaehler structure. He shows that the first betti number of this manifold is 3 whereas the odd-dimensional Betti numbers of a compact Kaehler are even. E. Abbena defined a metric on this manifold and a compatible almost complex structure on M. From now on we call this manifold as Abbena-Thurston manifolds.

In this section we will introduce the Abbena-Thurston manifold and its curvature. Let G be the closed connected subgroup of GL(4, C)defined by

$$\left\{ \left. \left(\begin{array}{ccccc} 1 & a_{12} & a_{13} & 0 \\ 0 & 1 & a_{23} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{2\pi i a} \end{array} \right) \right| a_{12}, a_{13}, a_{23}, a \in R \right\}.$$

Then G is the product of the Heisenberg group H and S^1 . Let Γ be the discrete subgroup of G with integer entries and $M = G/\Gamma$. Denote by x, y, z, t coordinates on G, say for $A \in G$, x(A) = a_{12} , $y(A) = a_{23}$, $z(A) = a_{13}$, t(a) = a. If L_B is the left translation by $B \in G$, then $L_B^* dx = dx$, $L_B^* dy = dy$, $L_B^* (dz - xdy) = dz - xdy$, and $L_B^* dt = dt$. In particular these forms are invariant under the action of Γ ; let $\pi: G \to M$, then there exist 1-forms $\alpha_1, \alpha_2, \alpha_3$, and α_4 on M such that $dx = \pi^* \alpha_1$, $dy = \pi^* \alpha_2$, $dz - x dy = \pi^* \alpha_3$, and $dt = \pi^* \alpha_4$. Setting $\Omega = \alpha_4 \wedge \alpha_2 + \alpha_2 \wedge \alpha_3$, we see that $\Omega \wedge \Omega \neq 0$ and $d\Omega = 0$ on M. Hence M admits a symplectic structure. The vector fields $e_1 = \frac{\partial}{\partial x}$, $e_2 = \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$, $e_3 = \frac{\partial}{\partial z}$, $e_4 = \frac{\partial}{\partial t}$ are dual to dx, dy, dz - xdy, dt respectively and are left invariant. Moreover $\{e_i\}$ is orthonormal with respect to the left invariant metric on G given by $ds^2 = dx^2 + dy^2 + (dz - xdy)^2 + dt^2$. On M the corresponding metric is $g = \sum \alpha_i \otimes \alpha_i$. The Riemannian manifold (M, g) is referred to as the Abbena-Thurston manifold. Moreover M carries an almost complex structure defined by $Je_1 = e_4$, $Je_2 = -e_3$, $Je_3 = e_2$, $Je_4 = -e_1$. Then noting that $\Omega(X, Y) = g(X, JY)$, we see that q is an associated

120

metric. With respect to the basis $\{e_i\}$ the components R_{kjih} of the curvature tensor are all zero except $R_{1221} = \frac{3}{4}$, $R_{2332} = -\frac{1}{4}$, and $R_{1331} = -\frac{1}{4}$. Thus the Ricci tensor Q is given by the matrix

$$\begin{pmatrix} -\frac{1}{2} & 0 & 0 & 0\\ 0 & -\frac{1}{2} & 0 & 0\\ 0 & 0 & \frac{1}{2} & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

and we note that this manifold is not Einstein but has the constant scalar curvature.

3. Abbena metric as a Crtitical point of Integral function

Let M be a compact orientable manifold and \mathcal{M} the set of all Riemannian metrics on M having the same total volume. Then we have a lemma 3 of p.25

LEMMA. Let T be a second order symmetric tensor field on M. Then $\int_M T^{ij} D_{ij} dV_g = 0$ for all symmetric tensor fields D satisfying $\int_M D_i^j dV_g = 0$ if and only if T = cg for some constant c.

Now we consider the Riemannian geometry of symplectic manifold. For a symplectic manifold M let k be any Riemannian metric and $X_1, ..., X_{2n}$ be a k-orthonormal basis. Consider the $2n \times 2n$ matrix $\Omega(X_i, X_j)$; it is non-singular and hence may be written as the product GF of a positive definite symmetric matrix G and an orthogonal matrix F. Then G defines a new metric g and F defines an almost complex structure J; checking the overlaps of local charts, it is easy to see that g and J are globally defined on M. The key point metric g created in this way is called associated metrics. They have the same volume element $dV = \frac{1}{2^n n!} \Omega^n$. Now we let \mathcal{A} the set of all associated metrics on M and define

(1)
$$A[g] = \int_M R_{kjih} R^{kjih} dV_g.$$

on \mathcal{A} . A C^{∞} curve on \mathcal{A} will be represented locally by $g_{ji}(x_1, x_2, ..., x_n; t)$ and we define a tensor field D_{ji} on (M, g(t)) by $D_{ji}(x,t) = \frac{\partial g_{ji}(x,t)}{\partial t}$. This symmetric (0, 2)-tensor satisfies $\int_{\mathcal{M}} D_p^{p} dV = 0$. The curvatue tensor $R_{kji}^{\ h}$ changes with g and we get $\frac{\partial}{\partial t}R_{kji}^{\ h} = \partial_k D_{ji}^{\ h} - \partial_j D_{ki}^{\ h}$, where the tensor $D_{ji}^{\ h}$ is defined by $D_{ji}^{\ h} = \{{}_{ji}^{\ h}\}$. It satisfies $D_{ji}^{\ h} = \frac{1}{2}(\nabla_j D_i^{\ h} + \nabla_i D_j^{\ h} - \nabla^h D_{ji})$ and ∇ means the covariant differentiation with respect to the metric tensor g(t). As we have $\frac{\partial}{\partial t}g_{ih} = -g^{ki}g^{jh}\frac{\partial}{\partial t}g_{kj} = -D^{ih}$, we get $\frac{\partial}{\partial t}(R_{kjih}R^{kjih}) = 4R^{kji}_{\ h}\nabla_k\nabla_i D_j^{\ h} - 2R_{kji}^{\ h}R^{kji}_{\ a}D_b^{\ a}$. Now, from (1) we get

$$\frac{d}{dt}A[g(t)] = \int_{M} \left[\frac{\partial}{\partial t} (R_{kjih}R^{kjih}) + \frac{1}{2}R_{kjih}R^{kjih}g^{qp}D_{qp}\right]dV.$$

Applying Green's theorem, we get

$$\frac{d}{dt}A[g(t)] = \int_{M} [4(\nabla_{i}\nabla_{k}R^{kji}{}_{h})D^{h}_{j} - 2R_{kji}{}^{q}R^{kjip}D_{qp} + \frac{1}{2}R_{kjih}R^{kjih}D^{p}_{p}]dV.$$

With the help of Ricci's identity and Bianchi's identity, we have

$$\frac{d}{dt}A[g(t)] = \int_{M} [2\nabla^{j}\nabla^{i}R - 4\nabla_{p}\nabla^{p}R^{ji} + 4R^{j}{}_{p}R^{pi} - 4R^{j}{}_{qp}R^{pi} - 2R^{srqj}R_{srq}{}^{i} + \frac{1}{2}R_{dcba}R^{dcba}g^{ji}]D_{ji}dV.$$

From the Lemma, we see that g is a critical point of A[g] if and only if $2\nabla^{j}\nabla^{i}R - 4\nabla_{p}\nabla^{p}R^{ji} + 4R^{j}{}_{p}R^{pi} - 4R^{j}{}_{qp}{}^{i}R^{qp} - 2R^{srqj}R_{srq}{}^{i} + \frac{1}{2}R_{dcba}R^{dcba}g^{ji} = cg^{ji}$ for some constant c. By transvecting with g_{ji} , we get $c = -\frac{2}{n}\nabla_{p}\nabla^{p}R + (\frac{1}{2} - \frac{2}{n})R_{dcba}R^{dcba}$. Considering the curvature of Abbena-Thurston manifold stated in 2, we have the following theorem.

THEOREM. Let M be a Abbena-Thurston manifold and \mathcal{A} be the set of all associated metrics on M. Then the Abbena metric g is a critical point of the functional A[g] defined on \mathcal{A} .

References

- 1 E Abbena, An example of an almost Kaehler manifold which is not Kaehlerian, Bollettino U.M.I 3-A (1984), 383-392.
- L A. Cordero, M. Fernandez and M. de Leon, Examples of compact non-Kaehler Almost Kaehler Manifolds, Proc. Am. Math. Soc. 95 (1985), 280-286.

- 3 D E Blair and S Ianus, Critical associated metric on symplectic manifolds, Contemporary Math. 51 (1986), 23-29
- 4 Y.Mutó, On Einstein metrics, J.Diff. Geom 9 (1974), 521-530.

Department of Mathematics Chungbuk National University Cheongju 360-763, Korea