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k-INVARIANT HYPERSURFACE OF S$*(1/v2)x 5™(1/v?2)

SHIN,YONG Ho

0. Introduction

Yano{l] studied the differential geometry of $™ x S™ and introduced
the structure equations of real hypersurface of $"(1/v/2) x S™(1/v?2).

S.-5.Eum, U-H.Ki and Y.H.Kim [2] researched partially real hyper-
surfaces of S™ x S™ by using the concept of k-invariance.

In [3], the author found that the necessary and sufficient condition
for a hypersurface of S™ x S™ being k-antiholomorphic and investigated
its global properties

The purpose of the present paper is devoted to study the necessary
and sufficient condition for real hypersurfaces of 5" x S" being k-
invariant, and characterize their global properties.

In section 1, we recall the structure equations of hypersurfaces of
SY(1/V3) x S™(1/V3).

In section 2, we find the necessary and sufficient condition for a

hypersurface of S” x S™ being k-invariant, and prove that it is isometric
to S x §7,

1. Structure equations of hypersurfaces of $"(1/v/2)xS"(1/v/?2)

Let M be a hypersurface immersed isometrically in S"(1/v2) x
$™(1/V/2) as a submanifold of codimension 2 of (2n + 2)-dimensional
Euclidean space or real hypersurface of (2rn+1)-dimensional unit sphere
§2713(1). And we suppose that M is covered by the system of coordi-
nate neighborhoods {V'; 2}, where here and in the sequel, the indices
a,b,e,d,- - run over the range {1,2,---,2n — 1}.

Since the immersion ¢ : M — §"(1/v/2) x §7(1/v/2) is isometric,
from the (f, g, u,v, A)-structure defined on S* x S", we get the so-called
(f,9,u,v,w, A, g, v)-structure {2 given by
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(1.1) FEF® = =68 + upu® + vyo® + wpw®,

fout = -2t + o,
(1.2) fév® = du’ +vwt,

a,. e __ a a
fow® = —pu® —wvv

or, equivalently

e
Ue fo = AV — UWa, Vef, = —AUg — VW, Wwefy = PlUa + V04,

wen® =1 - A% — p?,  wuv® = —py, uw® = Iy,

vev® =1 -2 — 22, ww® =y,
wewe —_ 1_p2_v2

where u,, v, and w, are 1-forms associated with u%, v® and w’ :e-
spectively given by u, = ulgye, va = vPgpe and w, = wlgs,, and
foe = f{gca is skew-symmetric. Moreover, we obtain

(1.3) ke = —a,

(1.4) kRS = 8% — ko ke,

(1.5) kife + foke = kew® — wek®,
(1.6) kiue = —ve — pke, kive = —u. — vk,
(L.7) Valew ~ Vlgy = kakey — kckap,

(1.8) Veuy = pley — Akep + fob,
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(19) Vcwb = —HGch — chb + kcvb - {cef:':

(1.10) VA= —20,,Vepu =w, — Mg — I et®, Vo = keew® — v,

(1.11) Veky = lak® + 1o ks,
(1.12) Vky = —kbalg + afcb,
(1.13) Vea = =21, .k®,

From these structure equations, we can easily see that the 1-form k.
is the third fundamental tensor when M is considered as a submanifold
of codimension 2 immersed in S2"¥1(1).

Finally, we introduce the followings

REMARK[4]. If A2+ 4% +12 =1 on the hypersurface M, we see that
p = 0,v = constant(# 0),v., =0 and «=40.

And if the function A vanishes on some open set, then we have v, = 0
and p = 0. Moreover the 1-form uj never vanishes on an open set in
M, in fact, if the 1-form uy is zero on an open set in M, then f, =0,
which contradict n > 1.

LEMMA 1.1 [3]. Let M be a hypersurface satisfying kee f¢ = kpe f£
of S™(1/v/2) x 57(1/\/2). Then we have

/\2+;zz+v2:1 or p2+u2+a;n/=0

on M
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2. k-Invariant hypersurface of S*(1/V2) x $"*(1/v/?2)
Let M be a hypersurface of $”(1/v/2) x $"(1/4/2) such that
kEfE 4+ fEFE =0 holds every point of M or, equivalently

(2.1) keefy = kpe fc.

Then we have (2.2) - (2.6) (see [3]),

(2.2) (1-p® - vk, = 0w, (1-o*)w, = bk,
(2.3) keew® = —auw,

(2.4) (1 + vk + (p + avyve + (v + apue = 0,
(2.5) (1 + %) (1 = a®) (1~ A% - p* - %) =0,
(2.6) (v+ap)® + (p+ov)® = p? +v° + 20pr.

First of all we prove

LEMMA 2.1. Let M be a hypersurfave with (2.1) of S™(1/v/2) x
S™(1/V/2). If the function o is constant on M, then M is k-invariant
or k-antiholomorphics.

Proof. Since a is constant on M, (1.13) gives
l.k® =0.
Hence, the second relationship of (2.2) means that
(2.7) (1 - a®)ew® =0.
We now suppose that

(1—a®)(1 =22 = u?—2?) £0
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at some point p of M. Then (2.5) implies that

(2.8) #(p) = v(p) =0.

So the second equation of (1.10) gives
(2.9) leeu® = (1 — 6\)w,

at the point p because of (2.2) with g = v = 0.
From (2.8) and the fact that

e 2 2
wew® =1—p* — v,

we have w,w® = 1 at p € M. So the second equation of (2.2) means
that

ot 46 =1

at the point p. Consequently the function é is non-zero covariant con-
stant at p € M.

Transvecting (2.9) with w® and taking account of (2.8) and the fact
that w,w® = 1 at p € M, we get at the point because of (1 —a?)(p) # 0.
The constant § being nonzero, X is constant at p € M. Therefore, the
first equation of gives v, = 0 at the point p. So

20 = 1— A% = ?

leads to (1 — A%)(p) = 0 and hence u, = 0 at the point p because of
{2.8). According to Remark, it is contradictory.
Thus, 1t follows that

(2.10) (-1 -2 - =0

on M.

If1—A%~pu? -2 =0on M, then a vanishes identically because of
Remark in Section 1. Since o is constant, we see that M is k-invariant
or k-antiholomorphic. Thus Lemma 2.1 is proved.
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LEMMA 2.2. Let M be a hypersurface of S*(1/v/2) x S*(1/V/?2). In
order that the hypersurface is k-invariant, it is necessary and sufficient
that

(2.11) kofe + feke =0, ke — kil =0

hold on M.

Proof. The sufficiency comes immediately from (1.5) and (1.12).
Conversely, suppose that (2.11) is satisfied on M, then from Lemma
1.1 we have

Myt =1 or 2+ +20pr=0
on M. If we assume that the first equation of (2.12) holds on M then
v, =0, v = constant(# 0)
because of Remark. So the first equation of (1.6) gives
e + vk = 0.

Differentiating this covariantly and substituting (1.8) and (1.12), we
find

uzcb - Akcb + fcb = V(alcb - kbelg)
because v is constant, from which, taking the skew-symmetric part,
2fch = vkeely — kpell).

Thus, it contradicts the fact that the tensor f? has maximal rank
and the second relationship of (2.11).
Therefore, we obtain from (5.12) that

12+t 4+ 2apr =0
on M. In this case, we have v + ap = 0, g + av = 0 on M because of
(2.68), and hence p? = 2.
Consequently, (2.4) gives

(2.13) pke = 0.
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If the hypersurface is not k-invariant, then we have y = 0 and v = 0.
Hence (1.10) implies

(2.14) leet =1 —8\w,, I, v°=—~aw,

where we have used (2.2) with p = v = 0 and (2.3).
Transvecting the second equation of (2.11) with v°w? and u®w® suc-

cessively and taking account of (1.6), (2.3) and (2.14), we find respec-
tively

60X =2,0% = —1+6)
because of the fact that g = v = 0, which implies
1—a’=0, ie, k.=0.

Thus we see from (2.13) that the hypersurface is k-invariant. This
completes the proof of Lemma 2.2.

THEOREM 2.3. If M be is a k-invarinat hypersurface of S™(1/+/2) x
S™(1/V2)(n > 1) satisfying

(2.15) Iefe + fe12 =0,

then M is totally geodesic. Moreover, M is complete and M is §™~! x
s,

Proof. Since M is k-invariant, that is k. = 0, (1.12) reduces to
(2.16) pel = ooy

Transvecting this with w® and making use of (2.3) and the fact that
1—a? =0, we get

(2.17) Lew® =0,
where we have used the result of Lemma 2.2.
Differentiating the last expression covariantly and substituting with

k. =0, we get

(Vebpe)w® + G(~pgce — vkee — lcaf.) = 0,
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from which, taking the skew-summetric part and considering (1.7) with
k. = 0 and the second equation of (2.11),

I;lcaf: =0,

or, using (2.15)
lileafd = 0.

If we transvect with f°°, we obtain |}, f£]|* = 0 and hence
(2.18) leef =0,

which together with (1.1) yields

(2.19) le(—8; + usu® 4+ vpv°) =0

because of (2.17).
Applying v® to (2.18) and making use of (1.2) and (2.17), we find

Aleeu® =0.

Since the hypersurface is k-invarinat, remembering Remark, the func-
tion A does not vanish. Thus,

(2.20) leett® = 0.
Transvecting (2.16) with v®, gives
(2.21) Lt =0,
because of (1.6) with k. = 0 and (2.20). Using (2.20) and (2.21), the

equation (2.19) reduces I.; = 0, which shows that the hypersurface is
totally geodesic.

Since we have 1 — a? = 0 on M, (1.3),(1.4) and (1.11) reduce re-
spectively to

(2.22) ke = 41, kCk® =62, V. kE =0.
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Since the hypersurface M is totally geodesic, the second fundamental
tensor k2 of M in $27%1(1) has the form

1
(k) = 1
-1
for a suitable orthonomal frame. The first relationship of (2.22) means

that the multiplicity of the eigenvalue 1 of k% is n — 1 or n. Now, we
consider two distributions on M

Dy ={X|kX =X}, D,={X|kX =-X}

for any tangent vector X of M. Dy and Dy are parallel and involutive
because of (2.22). Thus, there exist maximal integral manifolds for Dy
and D; respectively, which are totally geodesic in M.

In usual way, M is a product of two spheres $™~! x §" provided
that M is complete. Therefore, Theorem 2.3 is proved.

Replacing the assumption (2.15) in Theorem 2.3 by
Lfe—fie =0,

we can easily see that the hypersurface is totally geodesic.
Thus we have

COROLLARY 2.4. Let M be a k-invarinat hypersurface of S*(1/v/2)x
S™(1/V2)(n > 1) satisfying

lef2 - fe12 =0,

Then M is totally geodesic. Moreover, the hypersurface is complete
and M is S*~! x §",
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THEOREM 2.5. Let M be a compact orientable k-invarinat hyper-
surface of $™(1//2) x $™(1/v/2)(n > 1) with constant mean curvature.
If the function p has definite sign on M then M is totally geodesic and
consequently $”~1 x §*,

Proof. Since the hypersurface M is k-invariant, (1.8) and (1.9) imply
respectively that

Veu® =pl+ da, V.u* =-2npu

because of (1.3).
Therefore, applying the Green-Stokes theorem to the above equa-

tion, we obtain
/ Aado =0

because the mean curvature of M is constant, do being the volume
element of M.
We have from (1.12)

(2.24) kpelo = alep

provided that hypersurface is k-invariant.
Operating V¢ to the second equation of (1.10) with k. = 0, we find

(2.25) Ap = Vew® = —(Vel )u® — I%(V uy),

where A means the Laplacian operator.
On the other hand, the function ! being constant, (1.7) with k., =0
yields
) Vel =0.

Using this fact, (2.25) leads to
Ap — Vw® = —pul I® + hal,

with the aid of (1.8) and (2.24).
Integrating this on M and making use of (2.23), we get

] plepl®do =0
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because the mean curvature of M is constant.
Since the function g has definite sign, we have

(2.26) plpl® = 0.
If we transvect (2.24) with w® and use (2.3), we find
(2.27) leew® =0

since {2.3) is a direct consequence of (1.5) with k* = 0.
If the function I.4I°® does not vanish at some point p in M, then
gives u(p) = 0 and hence v(p) = 0 because of (2.4) with k. =0.
Therefore the second equation of (1.10) turned out to be

(2.28) lceu® = we

at the point p. So (2.27) and (2.28) mean that w. = 0 at pof M. It
contradicts the fact that
wew® =1 —p —?

at the point p. Thus, it follows that the hypersurface is totally geodesic
because of {2.26).

According to Theorem 2.3, our assertion is true.
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