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fc-INVARIANT HYPERSURFACE OF Sn(l/x/5) x Sn(l/72)

Shin,Yong Ho

0. Introduction

Yano[l] studied the differential geometry of Sn x Sn and introduced 

the structure equations of real hypersurface of S"(l八〃)x Sn(l/x/2).

S.-S.Eum, U-H.Ki and Y.H.Kim [2] researched partially real hyper­

surfaces of Sn X Sn by using the concept of fc-invariance.

In [3], the author found that the necessary and sufficient condition 

for a hypersurface of Sn X Sn being A:-antiholomorphic and investigated 

its global properties

The purpose of the present paper is devoted to study the necessary 

and sufficient condition for real hypersnrfaces of Sn x Sn being k- 

invariant, and characterize their global properties.

In section 1, we recall the structure equations of hypersurfaces of 

Sn(l/\/2) x Sn(l/y/2).

In section 2, we find the necessary and sufficient condition for a 

hypersurface of Sn x Sn being 虹invariant, and prove that it is isometric 
to S71-1 x Sn.

1. Structure equations of hypersurfaces of Sn(l/vz2)xSn(l/\/2)

Let M be a hypersurface immersed isometrically in Sn(l/v^5) x 

Sn(l/vg) as a submanifold of codimension 2 of (2n + 2)-dimensional 

Euclidean space or real hypersurface of (2n+1)-dimensional unit sphere 

密+1(1). And we suppose that M is covered by the system of coordi­

nate neighborhoods {V; xa}, where here and in the sequel, the indices 

a, 6, c, d, • • * run over the range (1,2, - - - ,2n — 1).

Since 나ic immersion i : M Sn(l/y/2) x S"(l/、/2) is isometric, 

from the (/, g、u, v,入)-structure defined on SnxSn, we get the so-called 

(/? 5? u-> A, /z, z/)-structure [2] given by
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(1.1) /fc/e = 一站 + UbUa + VbVa + WbWa.

ffue = —Ava +

(1.2) f^ve = Xua + uwa,

f^we = -^ua - uva

or, equivalently

«e/a = 人応 一 卩시必 Vef^ = —Aua 一 UWa, Wef^ = ^Ua + VVa,

ueue = 1 — A2 — “2, t«eve =—卩丄人 uewe = —Al/,

veve = 1 — A2 — p2, vewe = A/i,

wewe = 1 — — z/2

where ua, va and wa are 1-forms associated with ua, va and wli ze- 

spectively given by ua = 渺 gy = vbgj,a and wa = 히/gy ax id 

fba = fbdca is skew-symmetric. Moreover, we obtain

(1.3) 驍=

(1.4) 蛛崂=理亠虹

(1.5) 崂+ f등心 = kcwa 一 wcka,

(1-6) k^ue = —vc _ 卩Jy k；Ve = —wc 一 이y

(1.7) d^cb —ddb = kdkcb 1 Rckdb、

(L8) c^b =卩丄 cb — \kcb + fcb»
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(L9)

(1.10) VCA = —2vc, Vc/z = wc — Afcc — Zceue, Vci/ = A:cewe 一 Zceve,

(1.11) 乙絲二厶砂+匕翊

(1.12) VcA：5 = —kba^c + 이<如

(1.13) Vca = —2ZceA：e,

From these structure equations, we can easily see that the 1-form kc 

is the third fundamental tensor when M is considered as a submanifold 

of codimension 2 immersed in S2n+1(l).

Finally, we introduce the followings

Remark[4] . If A2 + /z2 + = 1 on the hypersurface Af, we see that

卩=0,” = constant^ 0), vc = 0 and a — 0.

And if the function A vanishes on some open set, then we have vc = 0 

and /z — 0. Moreover the 1-form 询 never vanishes on an open set in 

M, in fact, if the 1-form 叫 is zero on an open set in M, then 偽 = 0, 

which contradict n > 1.

Lemma 1.1 [이。Let M be a hypersurface satisfying kcef^ = 人脆J芝 
of Sn(l/\/2) X Sn(l/y/2), Then we have

A2 + /i2 + i/2 = 1 or fj.2 + i/2 +《싸w = 0

on M
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2. ^-Invariant hypersurface of S"(l/v?) x Sn(l/V§)

Let Af be a hypersurface of Sn(l/\/2) x Sn(l/\/2) such that

^cfe + fcfe — 0 holds every point of M or, equivalently

(2.1) k喝錢=

Then we have (2.2) - (2.6) (see [3]),

(2.2) (1 一 “2 - u2)kc = 0wc, (1 一 a2)wc = 이如

(2.3) kcew = ―otwc^

(2.4) 3 + /)知 + (产 + a”)％ + (卩 + a/z)uc = 0,

(2.5) (/? + i/2)(l 一 a2)(l 一 入2 一 疽 一 /)= o,

(2.6) (v + a/z)2 + (〃 + az/)2 = /z2 + z/2 + 2《싸以

First of all we prove

LEMMA 2.1. Let M be a hypersurfave with (2.1) of Sn(l/\/2) x 

S”(l/\应).If the function a is constant on M, then M is k-invariant 

or k~antiholomorphics.

Proof. Since a is constant on M, (1.13) gives

Ice 萨=0.

Hence, the second relationship of (2.2) means that

(2.7) (1 — a2)lcewe = 0.

We now suppose that

(1一 °2)(1一 人2 一 * 一 〃2)#o
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at some point p of M. Then (2.5) implies that

(2.8) ”(p) = v{p) = 0.

So the second equation of (1.10) gives

(2.9) Zceue — (1 — 6X)wc

at the point p because of (2.2) with // = 〃 = 0.

From (2.8) and the fact that

er 2 2
WeW =1-/1 — V ,

we have wewe = 1 at p G M. So the second equation of (2.2) means 

that

cP + 俨=1

at the point p. Consequently the function 0 is non-zero covariant con­

stant at p G M.

Transvecting (2.9) with wc and taking account of (2.8) and the fact 

that wewe = 1 at p £ Af, we get at the point because of (1—a2)(p) + 0. 

The constant 9 being nonzero, A is constant at p € M, Therefore, the 

first equation of gives vc = 0 at the point p. So

veve = 1 一人2 —折2

leads to (1 一 A2)(p) = 0 and hence uc — 0 at the point p because of 

(2.8). According to Remark, it is contradictory.

Thus, it follows that

(2.10) (1 一 a2)(l 一 人2 " 一 /)= o

on M.

If 1 — A2 — /z2 — p2 = 0 on Af, then a vanishes identically because of 

Remark in Section 1. Since a is constant, we see that M is invariant 

or fc-antiholomorphic. Thus Lemma 2.1 is proved.
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Lemma 2.2. Let M be a hypersurface of Sn(l/\/2) x Sn(l/\/2). In 

order that the hypersurface is k-invariant, it is necessary and sufficient 

that

(2.11) 球+ 犬心=。,IcK - Kle = 0

hold on M.

Proof. The sufficiency comes immediately from (1.5) and (1.12). 

Conversely, suppose that (2.11) is satisfied on M, then from Lemma 

1.1 we have

A2 + p2 4- i/2 = 1 or #2 + / + 2《싸w = 0 

on M. If we assume that the first equation of (2.12) holds on Mathen 

vc = 0, u = constant^ 0)

because of Remark. So the first equation of (1.6) gives

uc 4- vkc = 0.

Differentiating this covariantly and substituting (1.8) and (1.12), we 

find

— 시Ccb + fcb ~~一 松beL) 

because y is constant, from which, taking the skew-symmetric part,

Thus, it contradicts the fact that the tensor has maximal rank 

and the second relationship of (2.11).

Therefore, we obtain from (5.12) that

淀 + “2 + 2c甲〃 =0

on M. In this case, we have v + a/z — 0, // + otv — 0 on M because of 

(2.6), and hence 俨 = /
Consequently, (2.4) gives

(2.13) 卩& = 0.
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If the hypersurface is not ^-invariant, then we have “ = 0 and 〃 = 0.

Hence (1.10) implies

(2.14) lceue = (1 - 6X)wc, lceve = —awc

where we have used (2.2) with 〃 = 〃 = 0 and (2.3).

Transvecting the second equation of (2.11) with vcwb and ubwb suc­

cessively and taking account of (1.6), (2.3) and (2.14), we find respec­

tively

6X = 2, a2 = —1 + 0X

because of the fact that /z = 〃 = 0, which implies

1 — a;2 = 0, i.e., kc = 0.

Thus we see from (2.13) that the hypersurface is fc-invariant. This 

completes the proof of Lemma 2.2.

THEOREM 2.3. If M be is a k-invarinat hypersurface of Sn(l/\/2) x 

Sn(l/\/2)(n > 1) satisfying

(2-15) +

then M is totally geodesic. Moreover, M is complete and M is Sn~x x 

S”.

Proof. Since M is A:-invaria,nt, that is kc = 0, (1.12) reduces to

(2.16) 砍以=alcb

Transvecting this with wb and making use of (2.3) and the fact that 

1 — a2 = 0, we get

(2.17) I be 이产 = 0,

where we have used the result of Lemma 2.2.

Differentiating the last expression covariantly and substituting with 

kc = 0, we get

+ 活(—~ 이临 — leaf?) = 0,
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from which, taking the skew-summetric part and considering (1.7) with 

= 0 and the second equation of (2.11),

nicaf： = 0,

or, using (2.15)

IfleaH = 0.

If we transvect with /c&, we obtain ||Zce/^||2 = 0 and hence

(2.18) 妃志=0,

which together with (1.1) yields

(2.19) Lx(—林 + 인+ W茯) = 0

because of (2.17).

Applying vb to (2.18) and making use of (1.2) and (2.17), we find

Xlceue = 0.

Since the hypersurface is fc-invarinat, remembering Remark, the func­

tion A does not vanish. Thus,

(2.20) lceue = 0.

Transvecting (2.16) with v&, gives

(2.21) lceve = 0.

because of (1.6) with 知=0 and (2.20). Using (2.20) and (2.21), the 

equation (2.19) reduces 1사＞ = 0, which shows that the hypersurface is 

totally geodesic.

Since we have 1 — a2 = 0 on M, (1.3),(1.4) and (1.11) reduce 호e- 

spectively to

(2.22) = ±1, =精 = 0.
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Since the hypersurface M is totally geodesic, the second fundamental 

tensor k? of M in S2n4-1(l) has the form 

/I \

0 

(峰)= -1

0 

\ -1/

for a suitable orthonomal frame. The first relationship of (2.22) means 

that the multiplicity of the eigenvalue 1 of fc® is n — 1 or n. Now, we 

consider two distributions on M

D1={X\kX=^ X},玖={X I SX = —X}

for any tangent vector X of M. Dy and D2 are parallel and involutive 

because of (2.22). Thus, there exist maximal integral manifolds for Dy 

and Z)2 respectively, which are totally geodesic in M.

In usual way, Af is a product of two spheres S*71*1 x Sn provided 

that M is complete. Therefore, Theorem 2.3 is proved.

Replacing the assumption (2.15) in Theorem 2.3 by

&岩 一 J* 以=0,

we can easily see that the hypersurface is totally geodesic. 

Thus we have

COROLLARY 2.4. Let M be a k-invarinat hypersurface of 5n( 1/y/2)x

Sn(l/\/2)(n > 1) satisfying

k以一尺C = 0.

Then M is totally geodesic. Moreover, the hypersurfoce is complete 

and M is Sn~l x Sn.



116 Shin,Yong Ho

THEOREM 2.5. Let M be a compact orientable fc-invarinat hyper­
surface of Sn(l/\/2) x S"(l/p②(n > 1) with constant mean curvature. 

If the function 卩，has definite sign on Mfthen M is totally geodesic and 

consequently S*11"1 x Sn.

Proof. Since the hypersurface M is fc-invariant, (1.8) and (1.9) imply 

respectively that

Veue = /〃 + Acu, Vewc = —2n/z

because of (1.3).

Therefore, applying the Green-Stokes theorem to the above equa­

tion, we obtain
JAada—0

because the mean curvature of M is constant, da being the volume 

element of M,

We have from (1.12)

(2-24) 既此=Mb

provided that hypersurface is 农invariant.

Operating Vc to the second equation of (1.10) with kc = 0, we find

(2.25) △" - Vew£ = -(VcZce)ue - Zc6(Vcu6),

where △ means the Laplacian operator.

On the other hand, the function I being constant, (1.7) with fcc = 0 

yields

VcZce = 0.

Using this fact, (2.25) leads to

△弘一VgWe =—卩丄涕1* + Xdll^

with 나aid of (1.8) and (2.24).

Integrating this on M and making use of (2.23), we get

] 卩，l°bl 새'do = 0
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because the mean curvature of M is constant.

Since the function 卩 has definite sign, we have

(2.26) filcblcb = 0.

If we transvect (2.24) with wb and use (2.3), we find

(2.27) lcewe = 0

since(2.3) is a direct consequence of (1.5) with ka = 0.

If the function lcblcb does not vanish at some point p in Af, then 

gives 产(p) = 0 and hence i/(p) = 0 because of (2.4) with kc = 0.

Therefore the second equation of (1.10) turned out to be

(2.28) Zcetze = wc

at the point p. So (2.27) and (2.28) mean that wc = 0 at p of M. It 

contradicts the fact that

wewe = ] _ “2 _ /

at the point p. Thus, it follows that the hypersurface is totally geodesic 

because of (2.26).

According to Theorem 2.3, our assertion is true.
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