k-INVARIANT HYPERSURFACE OF $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$

Shin,Yong Ho

0. Introduction

Yano[1] studied the differential geometry of $S^{n} \times S^{n}$ and introduced the structure equations of real hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.
S.-S.Eum, U-H.Ki and Y.H.Kim [2] researched partially real hypersurfaces of $S^{n} \times S^{n}$ by using the concept of k-invariance.

In [3], the author found that the necessary and sufficient condition for a hypersurface of $S^{n} \times S^{n}$ being k-antiholomorphic and investigated its global properties

The purpose of the present paper is devoted to study the necessary and sufficient condition for real hypersurfaces of $S^{n} \times S^{n}$ being k invariant, and characterize their global properties.

In section 1, we recall the structure equations of hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$.

In section 2, we find the necessary and sufficient condition for a hypersurface of $S^{n} \times S^{n}$ being k-invariant, and prove that it is isometric to $S^{n-1} \times S^{n}$.

1. Structure equations of hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$

Let M be a hypersurface immersed isometrically in $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})$ as a submanifold of codimension 2 of $(2 n+2)$-dimensional Euclidean space or real hypersurface of $(2 n+1)$-dimensional unit sphere $S^{2 n+1}(1)$. And we suppose that M is covered by the system of coordinate neighborhoods $\left\{\bar{V} ; \bar{x}^{a}\right\}$, where here and in the sequel, the indices a, b, c, d, \cdots run over the range $\{1,2, \cdots, 2 n-1\}$.

Since the immersion $i: M \rightarrow S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ is isometric, from the (f, g, u, v, λ)-structure defined on $S^{n} \times S^{n}$, we get the so-called ($f, g, u, v, w, \lambda, \mu, \nu$)-structure [2] given by

Received May 10,1996.

$$
\begin{equation*}
f_{b}^{e} f_{e}^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}+w_{b} w^{a} \tag{1.1}
\end{equation*}
$$

$$
\begin{align*}
f_{e}^{a} u^{e} & =-\lambda v^{a}+\mu w^{a} \\
f_{e}^{a} v^{e} & =\lambda u^{a}+\nu w^{a} \tag{1.2}\\
f_{e}^{a} w^{e} & =-\mu u^{a}-\nu v^{a}
\end{align*}
$$

or, equivalently

$$
\begin{aligned}
& u_{e} f_{a}^{e}=\lambda v_{a}-\mu w_{a}, \quad v_{e} f_{a}^{e}=-\lambda u_{a}-\nu w_{a}, \quad w_{e} f_{a}^{e}=\mu u_{a}+\nu v_{u} \\
& u_{e} u^{e}=1-\lambda^{2}-\mu^{2}, \quad u_{e} v^{e}=-\mu \nu, \quad u_{e} w^{e}=-\lambda \nu \\
& v_{e} v^{e}=1-\lambda^{2}-\nu^{2}, \quad v_{e} w^{e}=\lambda \mu \\
& w_{e} w^{e}=1-\mu^{2}-\nu^{2}
\end{aligned}
$$

where u_{a}, v_{a} and w_{a} are 1 -forms associated with u^{a}, v^{a} and w^{a} espectively given by $u_{a}=u^{b} g_{b a}, v_{a}=v^{b} g_{b a}$ and $w_{a}=w^{b} g_{b a}$, and $f_{b a}=f_{b}^{c} g_{c a}$ is skew-symmetric. Moreover, we obtain

$$
\begin{equation*}
k_{c}^{e} u_{e}=-v_{c}-\mu k_{c}, \quad k_{c}^{e} v_{e}=-u_{c}-\nu k_{c} \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{d} l_{c b}-\nabla_{c} l_{d b}=k_{d} k_{c b}-k_{c} k_{d b} \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} u_{b}=\mu l_{c b}-\lambda k_{c b}+f_{c b} \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} w_{b}=-\mu g_{c b}-\nu k_{c b}+k_{c} v_{b}-l_{c e} f_{b}^{e} \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} \lambda=-2 v_{c}, \nabla_{c} \mu=w_{c}-\lambda k_{c}-l_{c e} u^{e}, \nabla_{c} \nu=k_{c e} w^{e}-l_{c e} v^{e} \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} k_{b}^{a}=l_{c b} k^{a}+l_{c}^{a} k_{b} \tag{1.11}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} k_{b}=-k_{b a} l_{c}^{a}+\alpha l_{c b} \tag{1.12}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{c} \alpha=-2 l_{c e} k^{e} \tag{1.13}
\end{equation*}
$$

From these structure equations, we can easily see that the 1 -form k_{c} is the third fundamental tensor when M is considered as a submanifold of codimension 2 immersed in $S^{2 n+1}(1)$.

Finally, we introduce the followings
REMARK[4]. If $\lambda^{2}+\mu^{2}+\nu^{2}=1$ on the hypersurface M, we see that

$$
\mu=0, \nu=\operatorname{constant}(\neq 0), v_{c}=0 \quad \text { and } \quad \alpha=0
$$

And if the function λ vanishes on some open set, then we have $v_{c}=0$ and $\mu=0$. Moreover the 1 -form u_{b} never vanishes on an open set in M, in fact, if the 1 -form u_{b} is zero on an open set in M, then $f_{c b}=0$, which contradict $n>1$.

Lemma 1.1 [3]. Let M be a hypersurface satisfying $k_{c e} f_{b}^{e}=k_{b e} f_{c}^{e}$ of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$. Then we have

$$
\lambda^{2}+\mu^{2}+\nu^{2}=1 \quad \text { or } \quad \mu^{2}+\nu^{2}+\alpha \mu \nu=0
$$

on M
2. k-Invariant hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$

Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ such that $k_{c}^{e} f_{e}^{a}+f_{c}^{e} f_{e}^{a}=0$ holds every point of M or, equivalently

$$
\begin{equation*}
k_{c e} f_{b}^{e}=k_{b e} f_{c}^{e} \tag{2.1}
\end{equation*}
$$

Then we have (2.2) - (2.6) (see [3]),

$$
\begin{equation*}
\left(1-\mu^{2}-\nu^{2}\right) k_{c}=\theta w_{c}, \quad\left(1-\alpha^{2}\right) w_{c}=\theta k_{c}, \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
k_{c e} w^{e}=-\alpha w_{c}, \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mu^{2}+\nu^{2}\right) k_{c}+(\mu+\alpha \nu) v_{c}+(\nu+\alpha \mu) u_{c}=0 \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mu^{2}+\nu^{2}\right)\left(1-\alpha^{2}\right)\left(1-\lambda^{2}-\mu^{2}-\nu^{2}\right)=0 \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
(\nu+\alpha \mu)^{2}+(\mu+\alpha \nu)^{2}=\mu^{2}+\nu^{2}+2 \alpha \mu \nu \tag{2.6}
\end{equation*}
$$

First of all we prove
Lemma 2.1. Let M be a hypersurfave with (2.1) of $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})$. If the function α is constant on M, then M is k-invariant or k-antiholomorphics.

Proof. Since α is constant on M, (1.13) gives

$$
l_{c e} k^{e}=0
$$

Hence, the second relationship of (2.2) means that

$$
\begin{equation*}
\left(1-\alpha^{2}\right) l_{c e} w^{e}=0 \tag{2.7}
\end{equation*}
$$

We now suppose that

$$
\left(1-\alpha^{2}\right)\left(1-\lambda^{2}-\mu^{2}-\nu^{2}\right) \neq 0
$$

at some point p of M. Then (2.5) implies that

$$
\begin{equation*}
\mu(p)=\nu(p)=0 \tag{2.8}
\end{equation*}
$$

So the second equation of (1.10) gives

$$
\begin{equation*}
l_{c e} u^{e}=(1-\theta \lambda) w_{c} \tag{2.9}
\end{equation*}
$$

at the point p because of (2.2) with $\mu=\nu=0$.
From (2.8) and the fact that

$$
w_{e} w^{e}=1-\mu^{2}-\nu^{2},
$$

we have $w_{e} w^{e}=1$ at $p \in M$. So the second equation of (2.2) means that

$$
\alpha^{2}+\theta^{2}=1
$$

at the point p. Consequently the function θ is non-zero covariant constant at $p \in M$.

Transvecting (2.9) with w^{c} and taking account of (2.8) and the fact that $w_{e} w^{e}=1$ at $p \in M$, we get at the point because of $\left(1-\alpha^{2}\right)(p) \neq 0$. The constant θ being nonzero, λ is constant at $p \in M$. Therefore, the first equation of gives $v_{c}=0$ at the point p. So

$$
v_{e} v^{e}=1-\lambda^{2}-\nu^{2}
$$

leads to $\left(1-\lambda^{2}\right)(p)=0$ and hence $u_{c}=0$ at the point p because of (2.8). According to Remark, it is contradictory.

Thus, it follows that

$$
\begin{equation*}
\left(1-\alpha^{2}\right)\left(1-\lambda^{2}-\mu^{2}-\nu^{2}\right)=0 \tag{2.10}
\end{equation*}
$$

on M.
If $1-\lambda^{2}-\mu^{2}-\nu^{2}=0$ on M, then α vanishes identically because of Remark in Section 1. Since α is constant, we see that M is k-invariant or k-antiholomorphic. Thus Lemma 2.1 is proved.

LEMMA 2.2. Let M be a hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$. In order that the hypersurface is k-invariant, it is necessary and sufficient that

$$
\begin{equation*}
k_{c}^{e} f_{e}^{a}+f_{c}^{e} k_{e}^{a}=0, \quad l_{c}^{e} k_{e}^{a}-k_{c}^{e} l_{e}^{a}=0 \tag{2.11}
\end{equation*}
$$

hold on M.
Proof. The sufficiency comes immediately from (1.5) and (1.12). Conversely, suppose that (2.11) is satisfied on M, then from Lemma 1.1 we have

$$
\lambda^{2}+\mu^{2}+\nu^{2}=1 \quad \text { or } \quad \mu^{2}+\nu^{2}+2 \alpha \mu \nu=0
$$

on M. If we assume that the first equation of (2.12) holds on M, then

$$
v_{c}=0, \quad \nu=\text { constant }(\neq 0)
$$

because of Remark. So the first equation of (1.6) gives

$$
u_{c}+\nu k_{c}=0
$$

Differentiating this covariantly and substituting (1.8) and (1.12), we find

$$
u l_{c b}-\lambda k_{c b}+f_{c b}=\nu\left(\alpha l_{c b}-k_{b e} l_{c}^{e}\right)
$$

because ν is constant, from which, taking the skew-symmetric part,

$$
2 f_{c b}=\nu\left(k_{c e} l_{b}^{e}-k_{b e} l_{c}^{e}\right)
$$

Thus, it contradicts the fact that the tensor f_{c}^{a} has maximal rank and the second relationship of (2.11).

Therefore, we obtain from (5.12) that

$$
\mu^{2}+\nu^{2}+2 \alpha \mu \nu=0
$$

on M. In this case, we have $\nu+\alpha \mu=0, \mu+\alpha \nu=0$ on M because of (2.6), and hence $\mu^{2}=\nu^{2}$.

Consequently, (2.4) gives

$$
\begin{equation*}
\mu k_{c}=0 \tag{2.13}
\end{equation*}
$$

If the hypersurface is not k-invariant, then we have $\mu=0$ and $\nu=0$.
Hence (1.10) implies

$$
\begin{equation*}
l_{c e} u^{e}=(1-\theta \lambda) w_{c}, \quad l_{c e} v^{e}=-\alpha w_{c} \tag{2.14}
\end{equation*}
$$

where we have used (2.2) with $\mu=\nu=0$ and (2.3).
Transvecting the second equation of (2.11) with $v^{c} w^{b}$ and $u^{b} w^{b}$ successively and taking account of (1.6), (2.3) and (2.14), we find respectively

$$
\theta \lambda=2, \alpha^{2}=-1+\theta \lambda
$$

because of the fact that $\mu=\nu=0$, which implies

$$
1-\alpha^{2}=0, \quad \text { i.e. }, \quad k_{c}=0
$$

Thus we see from (2.13) that the hypersurface is k-invariant. This completes the proof of Lemma 2.2.

Theorem 2.3. If M be is a k-invarinat hypersurface of $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})(n>1)$ satisfying

$$
\begin{equation*}
l_{c}^{e} f_{e}^{a}+f_{c}^{e} l_{e}^{a}=0 \tag{2.15}
\end{equation*}
$$

then M is totally geodesic. Moreover, M is complete and M is $S^{n-1} \times$ S^{n}.

Proof. Since M is k-invariant, that is $k_{c}=0$, (1.12) reduces to

$$
\begin{equation*}
k_{b e} l_{c}^{e}=\alpha l_{c b} \tag{2.16}
\end{equation*}
$$

Transvecting this with w^{b} and making use of (2.3) and the fact that $1-\alpha^{2}=0$, we get

$$
\begin{equation*}
l_{b e} w^{e}=0 \tag{2.17}
\end{equation*}
$$

where we have used the result of Lemma 2.2.
Differentiating the last expression covariantly and substituting with $k_{c}=0$, we get

$$
\left(\nabla_{c} l_{b e}\right) w^{e}+l_{b}^{e}\left(-\mu g_{c e}-\nu k_{c e}-l_{c a} f_{e}^{a}\right)=0
$$

from which, taking the skew-summetric part and considering (1.7) with $k_{c}=0$ and the second equation of (2.11),

$$
l_{b}^{e} l_{c a} f_{e}^{a}=0
$$

or, using (2.15)

$$
l_{b}^{e} l_{e a} f_{c}^{a}=0
$$

If we transvect with $f^{c b}$, we obtain $\left\|l_{c e} f_{b}^{e}\right\|^{2}=0$ and hence

$$
\begin{equation*}
l_{c e} f_{b}^{e}=0 \tag{2.18}
\end{equation*}
$$

which together with (1.1) yields

$$
\begin{equation*}
l_{c e}\left(-\delta_{b}^{e}+u_{b} u^{e}+v_{b} v^{e}\right)=0 \tag{2.19}
\end{equation*}
$$

because of (2.17).
Applying v^{b} to (2.18) and making use of (1.2) and (2.17), we find

$$
\lambda l_{c e} u^{e}=0
$$

Since the hypersurface is k-invarinat, remembering Remark, the function λ does not vanish. Thus,

$$
\begin{equation*}
l_{c e} u^{e}=0 \tag{2.20}
\end{equation*}
$$

Transvecting (2.16) with v^{b}, gives

$$
\begin{equation*}
l_{c e} v^{e}=0 \tag{2.21}
\end{equation*}
$$

because of (1.6) with $k_{c}=0$ and (2.20). Using (2.20) and (2.21), the equation (2.19) reduces $l_{c b}=0$, which shows that the hypersurface is totally geodesic.

Since we have $1-\alpha^{2}=0$ on $M,(1.3),(1.4)$ and (1.11) reduce respectively to

$$
\begin{equation*}
k_{e}^{e}= \pm 1, \quad k_{c}^{e} k_{e}^{a}=\delta_{c}^{a}, \quad \nabla_{c} k_{b}^{a}=0 \tag{2.22}
\end{equation*}
$$

Since the hypersurface M is totally geodesic, the second fundamental tensor k_{c}^{a} of M in $S^{2 n+1}$ (1) has the form

$$
\left(k_{c}^{a}\right)=\left(\begin{array}{lllll}
1 & & & & \\
& \ddots & & 0 & \\
& & -1 & & \\
& 0 & & \ddots & \\
& & & & -1
\end{array}\right)
$$

for a suitable orthonomal frame. The first relationship of (2.22) means that the multiplicity of the eigenvalue 1 of k_{c}^{a} is $n-1$ or n. Now, we consider two distributions on M

$$
D_{1}=\{X \mid k X=X\}, \quad D_{2}=\{X \mid k X=-X\}
$$

for any tangent vector X of $M . D_{1}$ and D_{2} are parallel and involutive because of (2.22). Thus, there exist maximal integral manifolds for D_{1} and D_{2} respectively, which are totally geodesic in M.

In usual way, M is a product of two spheres $S^{n-1} \times S^{n}$ provided that M is complete. Therefore, Theorem 2.3 is proved.

Replacing the assumption (2.15) in Theorem 2.3 by

$$
l_{c}^{e} f_{e}^{a}-f_{c}^{e} l_{e}^{a}=0,
$$

we can easily see that the hypersurface is totally geodesic.
Thus we have
Corollary 2.4. Let M be a k-invarinat hypersurface of $S^{n}(1 / \sqrt{2}) \times$ $S^{n}(1 / \sqrt{2})(n>1)$ satisfying

$$
l_{c}^{e} f_{e}^{a}-f_{c}^{e} l_{e}^{a}=0 .
$$

Then M is totally geodesic. Moreover, the hypersurface is complete and M is $S^{n-1} \times S^{n}$.

Theorem 2.5. Let M be a compact orientable k-invarinat hypersurface of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})(n>1)$ with constant mean curvature. If the function μ has definite sign on M, then M is totally geodesic and consequently $S^{n-1} \times S^{n}$.
$P_{\text {roof. }}$ Since the hypersurface M is k-invariant, (1.8) and (1.9) imply respectively that

$$
\nabla_{e} u^{e}=\mu l+\lambda \alpha, \quad \nabla_{e} w^{e}=-2 n \mu
$$

because of (1.3).
Therefore, applying the Green-Stokes theorem to the above equation, we obtain

$$
\int \lambda \alpha \mathrm{d} \sigma=0
$$

because the mean curvature of M is constant, $\mathrm{d} \sigma$ being the volume element of M.

We have from (1.12)

$$
\begin{equation*}
k_{b e} l_{c}^{e}=\alpha l_{c b} \tag{2.24}
\end{equation*}
$$

provided that hypersurface is k-invariant.
Operating ∇^{c} to the second equation of (1.10) with $k_{c}=0$, we find

$$
\begin{equation*}
\Delta \mu-\nabla_{e} w^{e}=-\left(\nabla^{c} l_{c e}\right) u^{e}-l^{c b}\left(\nabla_{c} u_{b}\right) \tag{2.25}
\end{equation*}
$$

where Δ means the Laplacian operator.
On the other hand, the function l being constant, (1.7) with $k_{c}=0$ yields

$$
\nabla^{c} l_{c e}=0
$$

Using this fact, (2.25) leads to

$$
\Delta \mu-\nabla_{e} w^{e}=-\mu l_{c b} l^{c b}+\lambda \alpha l
$$

with the aid of (1.8) and (2.24).
Integrating this on M and making use of (2.23), we get

$$
\int \mu l_{c b} l^{c b} \mathrm{~d} \sigma=0
$$

because the mean curvature of M is constant.
Since the function μ has definite sign, we have

$$
\begin{equation*}
\mu l_{c b} c^{c b}=0 . \tag{2.26}
\end{equation*}
$$

If we transvect (2.24) with w^{b} and use (2.3), we find

$$
\begin{equation*}
l_{c e} w^{e}=0 \tag{2.27}
\end{equation*}
$$

since (2.3) is a direct consequence of (1.5) with $k^{a}=0$.
If the function $l_{c b} b^{c b}$ does not vanish at some point p in M, then gives $\mu(p)=0$ and hence $\nu(p)=0$ because of (2.4) with $k_{c}=0$.

Therefore the second equation of (1.10) turned out to be

$$
\begin{equation*}
l_{c e} u^{e}=w c \tag{2.28}
\end{equation*}
$$

at the point p. So (2.27) and (2.28) mean that $w_{c}=0$ at p of M. It contradicts the fact that

$$
w_{e} w^{e}=1-\mu^{2}-\nu^{2}
$$

at the point p. Thus, it follows that the hypersurface is totally geodesic because of (2.26).

According to Theorem 2.3, our assertion is true.

References

1 Yano,K., Defferental geometry of $S^{n} \times S^{n}$, J Diff Geo 8 (1973), 181-206.
2 Eum,S-S U-H.Ki and Y H.Kim, On hypersurfaces of $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$, J.Korean Math.Soc. 18 (1982), 109-122
3. Shin, Yong Ho, Structure of a Hypersurface ammersed in a product of two spheres, Pusan Kyŏngnam Math. J 11 (1) (1995), 87-113
4. Shin, Yong Ho and Kang, Tae Ho, Brieskorn manifold induced ${ }^{2 n}$ hypersurface of a product of two spheres, Pusan Kyŏngnam Math J 11(2) (1995), 351-357

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea

